如图,C为线段AE上一动点(不与点A、E重合).在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于H,AD与BC交于P,BE与CD交于Q,连接PQ、CH.(图形与旧版一样)只不过这回中间是竖杠,而不是横杠 问为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:49:01

如图,C为线段AE上一动点(不与点A、E重合).在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于H,AD与BC交于P,BE与CD交于Q,连接PQ、CH.(图形与旧版一样)只不过这回中间是竖杠,而不是横杠 问为
如图,C为线段AE上一动点(不与点A、E重合).在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于H,AD与BC交于P,BE与CD交于Q,连接PQ、CH.
(图形与旧版一样)只不过这回中间是竖杠,而不是横杠 问为啥HC平分∠AHE
(自己找图,我弄不出来) 求详解

如图,C为线段AE上一动点(不与点A、E重合).在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于H,AD与BC交于P,BE与CD交于Q,连接PQ、CH.(图形与旧版一样)只不过这回中间是竖杠,而不是横杠 问为
对于△acd和△bce而言,∠acd=∠bce,ac=bc,dc=ce所以全等,所以c到ad的距离和c到be的距离相等,根据角平分线线上的点到角两边的距离相等的逆定理,可得,c在∠ahe的平分线上,得证

对于△acd和△bce而言,∠acd=∠bce,ac=bc,dc=ce所以全等,所以c到ad的距离和c到be的距离相等,根据角平分线线上的点到角两边的距离相等的逆定理,可得,c在∠ahe的平分线上,得证

如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O.
(1)设AD与BC交于点P,BE与CD交于点Q,连接PQ、以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有
①②③⑤
(把你认为正确的序号都填上)
(2)在你认为恒成立的结论中选一个加以证明.<...

全部展开

如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O.
(1)设AD与BC交于点P,BE与CD交于点Q,连接PQ、以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有
①②③⑤
(把你认为正确的序号都填上)
(2)在你认为恒成立的结论中选一个加以证明.
①正确,∵△ABC与△DCE为等边三角形,
∴CD=CE,AC=BC,∠ACD=∠BCE=120°,
∴△ACD≌△BCE,
∴AD=BE.
②正确,
∵△ABC为等边三角形,
∴AC=BC,∠ACB=∠DCE=60°,
又∵∠BCD=180°-∠ACB-∠DCE=180°-60°-60°=60°,
又∵△ACD≌△BCE,
∴∠DAE=∠CBE,
∴△ACP≌△BCQ,
∴PC=CQ,
∴△PCQ为等边三角形,
∴∠PQC=∠QCE=60°
∴PQ∥AE.
③正确,
∵△PQC是等边三角形,
∴CQ=CP,
又∵∠ACP=∠BCQ,AC=BC,
∴△APC≌△BQC,
∴AP=BQ.
④错误,∵DC=DE,∠PCQ=∠CPQ=60°,
∴∠DPC>60°,
∴DP≠DC,即DP≠DE.
⑤正确,
∵∠CAP=∠OBP,∠BAC=60°,
∴∠BAP+∠OBP=60°,
又∵∠BAC=60°,
∴∠AOB=180°-(∠BAP+∠OBP)-∠BAC=60°.
故填①②③⑤.

收起

如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交与点O,AD与BC 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O, C为线段AE上一动点(不与点A,E重合)在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O,如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O,AD l;如图,C为线段AE上一动点(不与点A、E重合).如图,C为线段AE上一动点(不与点A、E重合).在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于O,AD与BE交与点P,BE与CD交于点Q,连接CO.现有5个结论;1 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O,AD与BC交与点P,BE与CD交与点Q,连接PQ求证:PQ//AE 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O,AD与BC交与点P,BE与CD交与点Q,连接PQ证∠AOB=60° 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.求证:1.△APC≌△BQC2.△PCQ是等边三角形 如图,C为线段AE上一动点(不与A、E重合),在AE同侧分别作正三角形ABC和正三角形CDEAD与BC交于点P,BE与CD交于点Q,连接PQ求证:(1)△ACD≌△BCE.(2)△PCQ为等边三角形. 如图,C为线段AE上一动点,(不与A,E重合),在AE同侧分别作等边三角形ABC和CDE.AD与BC交于点P,BE与CD交于Q,l连接PQ,连接OC【图片上没有连= =】证明:OC平分∠AOE如果证明不出来证明这个结论错误也 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交与点O,AD与BC交与点P,BE与CD交与点Q,连接PQ证明:PQ//AE,AP=BQ,图片网上都有,我上传不起,有跟我一样的题 如图,C为线段AE上一动点(不与点A、E重合).在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于H,AD与BC交于P,BE与CD交于Q,连接PQ、CH.如何证明HC平分啊HC平分角AHE 如图,C为线段AE上一动点(不与点A、E重合).在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于H,AD与BC交于P,BE与CD交于Q,连接PQ、CH.则∠AHC=∠CHE吗?并说明理由? .如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:① AD=BE; ② PQ‖AE; ③ AP=BQ; ④ DE=DP 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.(1)判断△PQC的形状,并说明理由.(2)诺AE=4当AC为何值 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正三角形ABC和正三角形CDE、AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ‖AE;③AP=BQ;④DE=DP;⑤∠AO 如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下五个结论:1,AD=BE;2,PQ∥AE;3.AP=BQ;5.∠AOB=60° 请老师帮我解决这道几何题.如图,C为线段AE上一动点(不与点A E重合)在AE同侧分别做等边△ABC和等边△CDE,AD与BE交于H,则∠AHB=多少度 请老师帮我解决这道几何题.如图,C为线段AE上一动点(不与点A E重合)在AE同侧分别做等边△ABC和等边△CDE,AD与BE交于H,则∠AHB=多少度