如图,梯形ABCD中,AD∥BC,S△ADC:S△ABC=2:3,而对角线中点M、N的连线段为10cm,求梯形两底的长.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:01:05

如图,梯形ABCD中,AD∥BC,S△ADC:S△ABC=2:3,而对角线中点M、N的连线段为10cm,求梯形两底的长.
如图,梯形ABCD中,AD∥BC,S△ADC:S△ABC=2:3,而对角线中点M、N的连线段为10cm,求梯形两底的长.

如图,梯形ABCD中,AD∥BC,S△ADC:S△ABC=2:3,而对角线中点M、N的连线段为10cm,求梯形两底的长.

∵MN=(BC-AD)/2(中线性质)
∴BC-AD=20 1)
∵S△ADC=AD*梯形的高
S△ABC=BC*梯形的高
S△ADC:S△ABC=AD:BC=2:3
∴BC=3AD/2 2)
把2)代入1)
3AD/2-AD/2=20
AD=40 cm
把AD=40代入2)
BC=3*40/2=60 cm
上底长40 cm,下底长60 cm

连接AM并延长交BC于E.
∵AD∥BC
∴∠ADM=∠EBM,∠DAM=∠BEM
又∵M为BD中点,
∴BM=DM;
在△ADM与△BEM中,
∠DAM=∠BEM∠ADM=∠EBMDM=BM

∴△ADM≌△BEM(AAS)
∴AM=EM,AD=BE
又∵N为AC中点,∴AN=CN
∴EC...

全部展开

连接AM并延长交BC于E.
∵AD∥BC
∴∠ADM=∠EBM,∠DAM=∠BEM
又∵M为BD中点,
∴BM=DM;
在△ADM与△BEM中,
∠DAM=∠BEM∠ADM=∠EBMDM=BM

∴△ADM≌△BEM(AAS)
∴AM=EM,AD=BE
又∵N为AC中点,∴AN=CN
∴EC=2MN=20,即BC-AD=20
∵AD∥BC,S△ADC:S△ABC=2:3
∴AD:BC=2:3
∴AD=40,BC=60.

收起

连接AM并延长交BC于E.
∵AD∥BC
∴∠ADM=∠EBM,∠DAM=∠BEM
又∵M为BD中点,
∴BM=DM;
∴△ADM≌△BEM(AAS)
∴AM=EM,AD=BE
又∵N为AC中点,∴AN=CN
∴EC=2MN=20,即BC-AD=20
∵AD∥BC,S△ADC:S△ABC=2:3
∴AD:BC=2:3<...

全部展开

连接AM并延长交BC于E.
∵AD∥BC
∴∠ADM=∠EBM,∠DAM=∠BEM
又∵M为BD中点,
∴BM=DM;
∴△ADM≌△BEM(AAS)
∴AM=EM,AD=BE
又∵N为AC中点,∴AN=CN
∴EC=2MN=20,即BC-AD=20
∵AD∥BC,S△ADC:S△ABC=2:3
∴AD:BC=2:3
∴AD=40,BC=60.,
∴△ADM≌△BEM(AAS)
∴AM=EM,AD=BE
又∵N为AC中点,∴AN=CN
∴EC=2MN=20,即BC-AD=20
∵AD∥BC,S△ADC:S△ABC=2:3
∴AD:BC=2:3
∴AD=40,BC=60.

收起


连接AM并延长交BC于E.

∵AD∥BC

∴∠ADM=∠EBM,∠DAM=∠BEM

又∵BM=DM

∴△ADM≌△EBM(AAS)

∴AM=EM,AD=BE

又∵AN=CN

∴MN为△ACE的中位线

∴CE=2MN=20cm,且CE=BC-BE=BC-AD=20cm

∵AD∥BC,S△ADC:S△ABC=2:3

∴AD:BC=2:3

又∵BC-AD=20cm

∴AD=40cm,BC=60cm

连接AM并延长交BC于E.
∵AD∥BC
∴∠ADM=∠EBM,∠DAM=∠BEM
又BM=DM
∴△ADM≌△BEM
∴AM=EM,AD=BE
又AN=CN
∴EC=2MN=20,即BC-AD=20
∵AD∥BC,S△ADC:S△ABC=2:3
∴AD:BC=2:3
∴AD=40,BC=60.

连接AM并延长交BC于E.
∵AD∥BC
∴∠ADM=∠EBM,∠DAM=∠BEM
又BM=DM
∴△ADM≌△BEM
∴AM=EM,AD=BE
又AN=CN
∴EC=2MN=20,即BC-AD=20
∵AD∥BC,S△ADC:S△ABC=2:3
∴AD:BC=2:3
∴AD=40,BC=60.


∵MN=(BC-AD)/2(中线性质)
∴BC-AD=20 1)
∵S△ADC=AD*梯形的高
S△ABC=BC*梯形的高
S△ADC:S△ABC=AD:BC=2:3
∴BC=3AD/2 2)
把2)代入1)
3AD/2-AD/2=20
AD=40 cm
把AD=40代入2)
BC=3...

全部展开


∵MN=(BC-AD)/2(中线性质)
∴BC-AD=20 1)
∵S△ADC=AD*梯形的高
S△ABC=BC*梯形的高
S△ADC:S△ABC=AD:BC=2:3
∴BC=3AD/2 2)
把2)代入1)
3AD/2-AD/2=20
AD=40 cm
把AD=40代入2)
BC=3*40/2=60 cm
上底长40 cm,下底长60 cm

收起