椭圆与直线椭圆的两个焦点坐标为(-1,0)(1,0),椭圆上存在一点x-y+4=0上,求长轴长最大时椭圆的方程.我的解答是:c=1,a^2-b^2=1,设椭圆方程x^2/a^2+y^2/(a^2-1)=1又x-y+4=0,联立,得(2a^2-1)x^2+8 a^2 x^2+17a^2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:14:25

椭圆与直线椭圆的两个焦点坐标为(-1,0)(1,0),椭圆上存在一点x-y+4=0上,求长轴长最大时椭圆的方程.我的解答是:c=1,a^2-b^2=1,设椭圆方程x^2/a^2+y^2/(a^2-1)=1又x-y+4=0,联立,得(2a^2-1)x^2+8 a^2 x^2+17a^2
椭圆与直线
椭圆的两个焦点坐标为(-1,0)(1,0),椭圆上存在一点x-y+4=0上,求长轴长最大时椭圆的方程.
我的解答是:c=1,a^2-b^2=1,设椭圆方程x^2/a^2+y^2/(a^2-1)=1
又x-y+4=0,联立,得(2a^2-1)x^2+8 a^2 x^2+17a^2-a^4=0
Δ=8a^6-76a^4+68a^2
题干中的“存在一点”是仅存在一点,还是有交点

椭圆与直线椭圆的两个焦点坐标为(-1,0)(1,0),椭圆上存在一点x-y+4=0上,求长轴长最大时椭圆的方程.我的解答是:c=1,a^2-b^2=1,设椭圆方程x^2/a^2+y^2/(a^2-1)=1又x-y+4=0,联立,得(2a^2-1)x^2+8 a^2 x^2+17a^2
由椭圆的定义可以知道:直线x-y+4=0上一点p到两焦点距离之和为2a(a为半长轴长)所以,问题转化为直线上一点p,到两焦点距离之和最小,作其中一点关于直线的对称点F'这个线段长就是最短长轴长

椭圆两个焦点坐标分别为F1(-根号3,0)(根号3,0),且椭圆过(1,-根号3/2) 椭圆两个焦点坐标分别为F1(-根号3,0)(根号3,0),且椭圆过(1,-根号3/2)(1)求椭圆方程(2)过点(-6/5,0),作不与Y轴垂直的直线L交该 已知中心在坐标原点的椭圆经过直线x-2y-4=0与坐标轴的两个焦点,则该椭圆的离心率为? 已知椭圆c:x²/a²+y²/b²(a>b>0)右焦点F的坐标为(1,0)两个焦点与短轴的一个动点构成等边三角形.(1)求椭圆的方程 (2)已知过椭圆的右焦点且不垂直于坐标轴的直线与椭圆c交于A,B两 关于几个椭圆的问题.1.过椭圆x²/a²+y²/b²=1(a>b>0)的焦点作与长轴垂直的直线,直线被椭圆截得的线段的长为多少?2.若椭圆的两个焦点分别为F1,F2,过点F2作椭圆长轴的垂线交椭圆于点 已知椭圆的中心在坐标原点O,焦点在X轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,椭圆上一点到焦点的最大距离为√2+1(1)求椭圆的标准方程(2)直线l过点P(0,2)且与椭圆相交于A,B 已知椭圆关于坐标轴对称,它的一个焦点为(1,0)并且椭圆短轴的一个顶点与两个焦点构成等腰直角三角形直线y=x+m与椭圆相较于A,B两点 求使AB距离最大值时m的值,并求距离AB的最大值 已知两个椭圆的两个焦点F1(-1,0),F2(1,0),且椭圆与直线y=x-根号3相切,求椭圆的方程 关于椭圆与直线的数学问题.直线l的方程为y=2x-4,椭圆C的一个焦点为(0,1).若椭圆C经过直线l上一点P,当椭圆C的离心率取得最大值时,求椭圆C的方程和点P的坐标. 设F1,F2,为椭圆X^2/9+Y^2/4=1的两个焦点,P为椭圆上一点,已知P、F1、F2是一个直角三角形的三个顶点,且|PF1|>|PF2|,求|PF1|/|PF2|的值.已知椭圆的中心在坐标原点O,焦点在坐标轴上,直线Y=X+1与椭圆交于P和 已知椭圆 椭圆上的点到两焦点的距离之和为6已知椭圆 椭圆上的点到两焦点的距离之和为6 以坐标原点为圆心 b为半径的圆和直线x+y+√2相切 (1) 求椭圆的离心率2)若直线l与椭圆c交于m n两 已知椭圆的中心在坐标原点O,焦点在x轴上,短轴长为2,且两个焦点和短轴的两个端点恰为一个正方形的顶点,过右焦点F与x轴不垂直的直线l交椭圆于P,Q两点 (1)求椭圆的方程(2)在线段OF上是否 高中椭圆与直线题,求详解……已知椭圆x2/a2+y2/b2=1(a>b>0)的右焦点为F(1,0),M为椭圆上顶点,O为坐标原点,且△OMF是等腰直角三角形(1)求椭圆方程;(2)是否存在直线l交椭圆于P、Q两点,且使F 已知椭圆的方程为16y^2+9x^2=144(1)求椭圆的离心率,焦点坐标,顶点坐标(2)若直线L的倾斜角为π/3,且过椭圆的右焦点,求直线L的方程(3)如果以椭圆右焦点为圆心的圆与直线L相切,求圆的方 已知椭圆的两个焦点分别为F1(-1,0)F2(1,0),短轴两个端点分别为B1B2,若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交与拼,P,Q两点,且线段PQ为直径的圆经过椭圆c左焦点,求直线l方程 椭圆直线题已知椭圆的中心为直角坐标系的原点,焦点在x轴上,它的一个顶点到两个焦点的距离分别是3和1求:(1)该椭圆的方程(2)设F1,F2为该椭圆的焦点,过椭圆中心O任作一直线与椭圆交 椭圆题,急等!椭圆c过点M(1,3/2)两个焦点为A(-1,0)、B(1,0),O为坐标原点.直线l过A(-1,0),且与椭圆c交与p.q两点,求三角形bpq面积的最大值. 已知椭圆C/x2/a2+y2/b2=1(a>b>0)两个焦点之间的距离为2,且其离心率为根号2/2 求椭圆C的标准方程求F为椭圆C的右焦点,经过椭圆的上顶点B的直线与椭圆另一个交点为A,且满足向量BA乘以向量BF=2 已知椭圆的两个焦点F1,F2的坐标分别为(-2,0),(2,0),并且经过点(2,5/3).过左焦点F1,斜率为k1(k1≠0)的直线与椭圆交于A、B两点.设R(1,0),延长AR,BR分别与椭圆交于C,D两点.(1) 求椭圆的标准方程.(2) 若点A(2