设f(x)=sin(2x+π/6)+2msinxcosx,x∈R,若f(x)的最大值为1/2,求m值f(x)=sin(2x+π/6)+2msinxcosx=(√3sin2x)/2+(cos2x)/2+msin2x=(m+√3/2)sin2x+(cos2x)/2所以f(x)的最大值为√[1/4+(m+√3/2)^2=1/2解得m=-√3/2所以f(x)的最大值为
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 03:31:35
设f(x)=sin(2x+π/6)+2msinxcosx,x∈R,若f(x)的最大值为1/2,求m值f(x)=sin(2x+π/6)+2msinxcosx=(√3sin2x)/2+(cos2x)/2+msin2x=(m+√3/2)sin2x+(cos2x)/2所以f(x)的最大值为√[1/4+(m+√3/2)^2=1/2解得m=-√3/2所以f(x)的最大值为
设f(x)=sin(2x+π/6)+2msinxcosx,x∈R,若f(x)的最大值为1/2,求m值
f(x)=sin(2x+π/6)+2msinxcosx
=(√3sin2x)/2+(cos2x)/2+msin2x
=(m+√3/2)sin2x+(cos2x)/2
所以f(x)的最大值为√[1/4+(m+√3/2)^2=1/2
解得m=-√3/2
所以f(x)的最大值为√[1/4+(m+√3/2)^2=1/2是什么意思
设f(x)=sin(2x+π/6)+2msinxcosx,x∈R,若f(x)的最大值为1/2,求m值f(x)=sin(2x+π/6)+2msinxcosx=(√3sin2x)/2+(cos2x)/2+msin2x=(m+√3/2)sin2x+(cos2x)/2所以f(x)的最大值为√[1/4+(m+√3/2)^2=1/2解得m=-√3/2所以f(x)的最大值为
f(x)=(m+√3/2)sin2x+(cos2x)/2
就是F(X)=Asin2x+Bcos2X
F(X)值域【-根号下(A^2+B^2),+根号下(A^2+B^2)】
所以最大值根号下(A^2+B^2)
也就是√[1/4+(m+√3/2)^2=1/2
所以求出m了
设函数 f(x)=sin(2x+y),(-π
设函数f(x)=sin(2x+φ)(-π
设函数f(x)=sin(2x+φ)(-π
设函数f x=SIN(2X+φ)(-π
设函数f(x)=sin(2x+φ)(-π
设函数f(x)=sin(2x+φ)(-π
设函数f(x)=sin(2x+φ)(-π
设函数f(x)=sin(2x+φ)(-π
设函数f(x)=sin(2x+ φ)(-π
设函数f(x)=sin(2x+φ)(-π
设函数f(x)=sin(2x+ φ)(-π
设函数f(x)=sin(2x+φ)(-π
设f(x)=sin(2x+π/6)+2msinxcosx,x∈R,若f(x)的最大值为1/2,求m值
设函数f(x)=2sin(2x-π/6)在x∈【0,π/2】上两个零点,则m的取值范围f(x)=2sin(2x-π/6)-m
设函数f(x)=sinπ/6(x),则f(1)+f(2)+f(3)+…f(2008)=?
设函数f(x)=sinπ/6(x),则f(1)+f(2)+f(3)+…f(2008)=?
设函数f(x)=sin(2x+π/6)+m+1/2求f(x)的最小正周期及递增区间
设函数f(x)=sin(2x+π/6)+m (1)写出函数f(x)的最小正周期及单调区间