如图,二次函数y=ax²+bx的图像与一次函数y=x+2的图像交于A,B两点,点A的横坐标-1,点B的横坐标2求二次函数的表达式2)设点C在二次函数图像的OB段上,求四边形OABC面积的最大值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:15:32
如图,二次函数y=ax²+bx的图像与一次函数y=x+2的图像交于A,B两点,点A的横坐标-1,点B的横坐标2求二次函数的表达式2)设点C在二次函数图像的OB段上,求四边形OABC面积的最大值
如图,二次函数y=ax²+bx的图像与一次函数y=x+2的图像交于A,B两点,点A的横坐标-1,点B的横坐标2
求二次函数的表达式
2)设点C在二次函数图像的OB段上,求四边形OABC面积的最大值
如图,二次函数y=ax²+bx的图像与一次函数y=x+2的图像交于A,B两点,点A的横坐标-1,点B的横坐标2求二次函数的表达式2)设点C在二次函数图像的OB段上,求四边形OABC面积的最大值
(1)由图像可知:a > 0而且b = 0, 所以二次函数的表达式可写成y = ax²,
联立y = ax²和y = x + 2,得:ax² - x - 2 = 0,将x = -1代入,可得:a = 1.
所以所求二次函数的表达式为y = x².
(2)设点C的坐标为(x, x²)( 0 < x < 2),分别过点A,C,B分别作x轴的垂线AD,CE,BF,则所求四边形OABC的面积是
S = S(ABFD) - S(AOD) - S(COE) - S(BCEF)
= (1 + 4)*3 / 2 - 1 * 1 / 2 - x * x² / 2 - (x² + 4) * (2 - x) / 2
即,S = -x² + 2*x + 3=-(x-1)²+4
显然当x = 1时,S取得最大值4.
1)将A,B点坐标代人y=x+2解得A,B的纵坐标。再将A,B坐标代人y=ax²+bx解得二次函数的表达式
2)点C肯定是点A的对称点,直线OC有与AB平行。再求OA,就可以求出梯形的面积。
由图像可知:a > 0而且b = 0, 所以:y = ax²
联立:y = ax² ,y = x + 2得:ax² - x - 2 = 0,将x = -1带进去,可得:a = 1, 所以:y = x²,
过点A,C,B分别作x轴的垂线,D,E,F
S = S(ABFD) - S(AOD) - S(COE) - S(BCEF)...
全部展开
由图像可知:a > 0而且b = 0, 所以:y = ax²
联立:y = ax² ,y = x + 2得:ax² - x - 2 = 0,将x = -1带进去,可得:a = 1, 所以:y = x²,
过点A,C,B分别作x轴的垂线,D,E,F
S = S(ABFD) - S(AOD) - S(COE) - S(BCEF)
设点C的坐标为(x, x²)( 0 < x < 2)
S = (1 + 4)*3 / 2 - 1 * 1 / 2 - x * x² / 2 - (x² + 4) * (2 - x) / 2
整理得:S = -x² + 2*x + 3
对称轴x = 1,显然S在x = 1取得最大值4
如果有误,请指正!
谢谢!
收起
见图
(1)A坐标(-1,1),B坐标(2,4), 代入y=ax²+bx即得二次函数表达式。
(2)思路:四边形OABC由三个三角形组成,假设一次函数与Y轴相交于点E,
则四边形OABC=△OAE+△EBO+△BOC
而其中△OAE和△EBO的面积是固定的,故,要想OABC面积最大,只需要
找一个点C使得△BOC面...
全部展开
(1)A坐标(-1,1),B坐标(2,4), 代入y=ax²+bx即得二次函数表达式。
(2)思路:四边形OABC由三个三角形组成,假设一次函数与Y轴相交于点E,
则四边形OABC=△OAE+△EBO+△BOC
而其中△OAE和△EBO的面积是固定的,故,要想OABC面积最大,只需要
找一个点C使得△BOC面积最大。而对于△BOC,其边BO固定,所以需要找到
值最大的一条高。
问题就转化为求点到直线的距离了。
设C(x0,y0)
列出点C到直线BO的距离方程。
将点C的坐标代入二次函数中。
两个方程联立,求极大值即为点C坐标。
收起