【初中数学】﹙1-1/2²﹚﹙1-1/3²﹚...﹙1-1/2013²﹚﹙1-1/2²﹚﹙1-1/3²﹚...﹙1-1/2013²﹚★简便运算,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 16:25:21
【初中数学】﹙1-1/2²﹚﹙1-1/3²﹚...﹙1-1/2013²﹚﹙1-1/2²﹚﹙1-1/3²﹚...﹙1-1/2013²﹚★简便运算,
【初中数学】﹙1-1/2²﹚﹙1-1/3²﹚...﹙1-1/2013²﹚
﹙1-1/2²﹚﹙1-1/3²﹚...﹙1-1/2013²﹚
★简便运算,
【初中数学】﹙1-1/2²﹚﹙1-1/3²﹚...﹙1-1/2013²﹚﹙1-1/2²﹚﹙1-1/3²﹚...﹙1-1/2013²﹚★简便运算,
分母=2013*2=4026,分子=1+2013=2014,得数=2014/4026
﹙1-1/2²﹚﹙1-1/3²﹚...﹙1-1/2013²﹚
=3/4*﹙1-1/3²﹚...﹙1-1/2013²﹚
=4/6*﹙1-1/4²﹚...﹙1-1/2013²﹚
=5/8*﹙1-1/5²﹚...﹙1-1/2013²﹚
=6/10*﹙1-1/6²﹚...﹙1-1/2013²﹚
=7/12...
找出规律到第一个小括号得数的分母是2的两倍,分子是2+1
找出规律到第二个小括号得数的分母是3的两倍,分子是3+1
···
找出规律到第2012个小括号得数的分母是2013的两倍,分子是2013+1
1007/2013 你把第四个等号后面的删去不看,因为阶乘可能没学,去掉不影响后面的
请在此输入您的回答,每一次专业解答都将打造您的权威形象
原式=(1-1/2)(1+1/2)(1-1/3)(1+1/3)...(1-1/2013)(1+1/2013)
=(1/2)[(3/2)(2/3)(4/3)(3/4)(5/4)...(2013/2012)(2012/2013)](2014/2013)
=(1/2)*1*1*1....*1*(2014/2013)
=2014/4026.
=1007/2013
解题辛苦,望采纳. 祝你答题顺利!
原式=( 1-1/2) (1+1/2) (1+1/3) (1-1/3) (1- 1/4) (1+1/4)............(1-1/2012)(1+1/2012)(1-1/2013)(1+1/2013)
=1/2 * 3/2 *4/3 *2/3 ..........
=1/2* 2014/2013
=1007/2013
参考公式
a^2 -b^2= (a+b)(a-b)
(1-1/a²)等于 (1+1/a)(1-1/a)
以此类推原式等于1007/2013
用平方差嘛~很简单。
一减二分之一的平方化成(1-1/2)(1+1/2)
以后的以此类推
之后中间约分
得(1/2)(2014/2013)
答案就是(2014/4026)望采纳
原式=(1-1/2)(1+1/2)(1-1/3)(1+1/3)(1-1/4)(1+1/4)......(1-1/99)(1+1/99)(1-1/100)(1+1/100)
=(1/2)[(3/2)(2/3)(4/3)(3/4)(5/4).....(98/99)(100/99)(99/100)](101/100)
=(1/2)*1*1*1....*1*(101/100)
=(1/2)(101/100)
=101/200
=﹛1-(1/2)²﹜·﹛1-(1/3)²﹜·﹛1-﹙1/4﹚²﹜······﹛1-﹙1/n²﹚﹜
=﹙1-1/2﹚·﹙1﹢1/2﹚·﹙1-1/3﹚·﹙1﹢1/3﹚·﹙1-1/4﹚·﹙1﹢1/4﹚······﹙1-1/n﹚·﹙1﹢1/n﹚
=1/2×3/2 ×2/3 ×4/3×3/4×········×﹙n-1﹚/n×﹙n﹢1﹚/n
全部展开
=﹛1-(1/2)²﹜·﹛1-(1/3)²﹜·﹛1-﹙1/4﹚²﹜······﹛1-﹙1/n²﹚﹜
=﹙1-1/2﹚·﹙1﹢1/2﹚·﹙1-1/3﹚·﹙1﹢1/3﹚·﹙1-1/4﹚·﹙1﹢1/4﹚······﹙1-1/n﹚·﹙1﹢1/n﹚
=1/2×3/2 ×2/3 ×4/3×3/4×········×﹙n-1﹚/n×﹙n﹢1﹚/n
=1/2×﹙n-1﹚/n
=﹙n-1﹚/2n
收起
原式=(1-1/2)(1+1/2)(1-1/3)(1+1/3)(1-1/4)(1+1/4)......(1-1/2012)(1+1/2012)(1-1/2013)(1+1/2013)
=(1/2)[(3/2)(2/3)(4/3)(3/4)(5/4).....(2011/2012)(2013/2012)(2012/2013)](2014/2013)
=(1/2)*1*1*1....*1*(2014/2013)
=(1/2)(2014/2013)
=1007/2013
用因式分解做:
原式=(1-1/2)(1+1/2)(1-1/3)(1+1/3)......(1-1/2013^2)(1+1/2013^2)
=(1/2)(3/2)(2/3)(4/3).....(2011/2012)(2013/2012)(2012/2013)(2014/2013)
中间项消除,剩下首尾项
=(1/2)*1*1*1....*1*(2014/2013)
=(1/2)(2014/2013)
=1007/2013
先由平方差公式得
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)......(1-1/2013)(1+1/2013)
算出括号的每个数
=(1/2) X (3/2) X( 2/3) X (4/3) X(3/4) X(5/4) X(4/5)x(6/5)x........x (2011/2012)X (2013/2012) (2012/2013)x (2014/2...
全部展开
先由平方差公式得
=(1-1/2)(1+1/2)(1-1/3)(1+1/3)......(1-1/2013)(1+1/2013)
算出括号的每个数
=(1/2) X (3/2) X( 2/3) X (4/3) X(3/4) X(5/4) X(4/5)x(6/5)x........x (2011/2012)X (2013/2012) (2012/2013)x (2014/2013)
约分得
=(1/2 )X (2014/2013)
=1007/2013
备注:括号是为了让你看清楚些
收起
你现在会了吗 不会我再教你
反正用平方差公式
原式=[(2²-1)/2²][(3²-1)/3²]......[(2013²-1)/2013²]
=[(2-1)(2+1)(3-1)(3+1)......(2013-1)(2013+1)]/(2²x3²x...x2013²)
=(1x2x3x...x2014)(3x4x...x2012)/(2x3x...2013)²
=2014/(2x2013)
=1007/2013