如果a,b互为相反数c,d互为倒数,n的绝对值等于5,求3a+3b+cd+n在1月9日,晚7.30回答我的问题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 14:26:33

如果a,b互为相反数c,d互为倒数,n的绝对值等于5,求3a+3b+cd+n在1月9日,晚7.30回答我的问题
如果a,b互为相反数c,d互为倒数,n的绝对值等于5,求3a+3b+cd+n
在1月9日,晚7.30回答我的问题

如果a,b互为相反数c,d互为倒数,n的绝对值等于5,求3a+3b+cd+n在1月9日,晚7.30回答我的问题
因为a,b互为相反数,
所以a+b=0,
因为c,d互为倒数,
所以cd=1,
因为n的绝对值等于5,
所以n=5或n=-5,
所以3a+3b+cd+n
=3(a+b)+cd+n
=1+n,
当n=5时,原式=6;
当n=-5时,原式=-4.

a+b=0,cd=1,|n|=5,所有n=5或n=-5
所以3a+3b+cd+n=3(a+b)+cd+n=1+n=6或-4

原式化为:3(a+b)+cd+n
因为a,b互为相反数c,d互为倒数
所以a+b=0,cd=1
所以原式为n+1
因为n的绝对值为5,n为正负5
所以原式等于-4或6

因为a,b互为相反数
所以a+b=0
因为c,d互为倒数
所以cd=1
因为n的绝对值等于5
所以n=±5
当n=5,3a+3b+cd+n=3(a+b)+cd+n=3*0+1+5=6
当n=-5,3a+3b+cd+n=3(a+b)+cd+n=3*0+1-5=-4

=3(a+b)+cd+n
=3*0+1+n
=1+(-)5
=6或-4

3a+3b+cd+n=3(a+b)+1+n=1+n
所以结果为6或-4