已知三角形ABC三边AB、BC、CA的长成等差数列,且|AB|>|CA|,点B、C的坐标为(-1,0)(1,0)求A点的轨迹方程,并说明它是什么曲线.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 20:39:04

已知三角形ABC三边AB、BC、CA的长成等差数列,且|AB|>|CA|,点B、C的坐标为(-1,0)(1,0)求A点的轨迹方程,并说明它是什么曲线.
已知三角形ABC三边AB、BC、CA的长成等差数列,且|AB|>|CA|,点B、C的坐标为(-1,0)(1,0)
求A点的轨迹方程,并说明它是什么曲线.

已知三角形ABC三边AB、BC、CA的长成等差数列,且|AB|>|CA|,点B、C的坐标为(-1,0)(1,0)求A点的轨迹方程,并说明它是什么曲线.
AB+AC=2BC=4
√[(x+1)²+y²]+√[(x-1)²+y²]=4
√[(x+1)²+y²]=4-√[(x-1)²+y²]
平方
x-4=2√[(x-1)²+y²]
平方
3x²+4y²=12
x²/4+y²/3=1
这是椭圆

三边AB、BC、CA 所以AB+AC=2BC
点B、C的坐标为(-1,0)(1,0) AB+AC=4
由椭圆定义,动点到两个定点的距离之和等于常数,所以A点的轨迹是以定点为焦点的椭圆
2a=4 a=2 c=1 b^2=3
又因为|AB|>|CA|, 是椭圆位于y轴右侧不包括x轴上一点
A点的轨迹方程
x²/4+y...

全部展开

三边AB、BC、CA 所以AB+AC=2BC
点B、C的坐标为(-1,0)(1,0) AB+AC=4
由椭圆定义,动点到两个定点的距离之和等于常数,所以A点的轨迹是以定点为焦点的椭圆
2a=4 a=2 c=1 b^2=3
又因为|AB|>|CA|, 是椭圆位于y轴右侧不包括x轴上一点
A点的轨迹方程
x²/4+y²/3=1 (y≠0,且x>0)

收起

已知三角形ABC,请画出一个P点,使它到AB、BC、CA三边的距离相等 在三角形ABC中,三边AB,BC,CA的长 成等差数列,且│AB│>│CA│,已知B(-1,0),C (1,0),则顶点A的轨迹方程是? 已知abc是三角形abc的三边,a的平方+ab-ac-bc=0,b的平方+bc-ba-ca=0,这是什么三角形 △ABC的三边AB,BC,CA的长分别是20,30,40,其三条角平分线将△ABC分为三个三角形.求点O到三边AB,BC,CA的 已知D E F分别是三角形ABC的三边BC CA AB的中点求三角形ABC相似三角形DEF 已知a,b,c分别为三角形ABC三边的长,且满足a的平方+ab-ac-bc=o,b的平方+bc-ba-ca=o,则这个三角形的形状为 已知圆O分别切三角形ABC的三边AB,BC,CA切点D,E,F.若BC=a,AC=b,AB=c当∠C=90°时,内切圆的半径长为多少 已知三角形ABC的三边a,b,c满足等式a²+ b²+ c²=ab+bc+ca,试判断三角形ABC的形状. 已知三角形ABC三边a,b,c满足a^2+b^2+c^2=ab+bc+ca,试判定三角形ABC的形状 乘法公式题目.已知a,b,c是三角形ABC的三边,且a2+b2+c2=ab+bc+ca 试问三角形ABC有何关系 2已知三角形ABC 三边AB,BC,CA的三边的长分别是3,5,4.KA为过三角形ABC 的顶点A而垂直于三角形ABC 所在的平面M的垂线,且KA=3,求K到BC边的距离. 已知三角形之三边BC,CA,AB上的高分别为ha=6,hb=4,hc=3.1.证三角形ABC是钝角三角形 2.求三角形ABC的面积已知三角形之三边BC,CA,AB上的高分别为ha=6,hb=4,hc=3.1.证三角形ABC是钝角三角形2.求三角形ABC的面 已知三角形ABC的三边为a.b.c,并且a的平方+b的平方+c的平方=ab+bc+ca求证 此三角形为等边三角形 △ABC的三边AB,BC,CA的长分别是20,30,40,其三条角平分线将△ABC分为三个三角形.求点O到三边AB,BC,CA的求点O到三边AB,BC,CA的距离比 已知:a、b、c为△ABC的三边,且ab+bc+ca=12,求三角形ABC的周长L的取值范围. 已知a,b,c分别为三角形ABC的三边,且a平方+b平方+c平方-ab-bc-ca=0,则这是一个什么样的三角形 已知a,b,c是三角形abc的三边,满足a^+b^+c^-ab-bc-ca=0,试判断△abc的形状, 已知A、B、C是三角形ABC的三边,且满足A^2+B^2+C^2等于AB+BC+CA,试判断此三角形形状.