已知f(1+cosx)=sin²x,求f(x)的解析式
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:45:13
已知f(1+cosx)=sin²x,求f(x)的解析式
已知f(1+cosx)=sin²x,求f(x)的解析式
已知f(1+cosx)=sin²x,求f(x)的解析式
f(1+cosx)=sin²x=1-cos²x=(1+cosx)(1-cosx)
=-(1+cosx)(1+cosx-2)
另1+cosx=t
原式变为:
f(t)=-t(t-2)=-t²+2t
即f(x)=-x²+2x
注意定义域!x∈(0,2)
1+cosx=m;
sin²x=n;
有(m-1)²+n =1
n=1-(m-1)²=-m²+2m
所以f(X)=-x²+2x
令1+cosx=u,0=则cosx=u-1
f(u)=sin²x=1-cos²x=1-(u-1)²
f(x)=-x²+2x (0=