设数列{An}的前n项和Sn=2An-2^n 1.证明数列{A(n+1)-2An}是等比数列 2.求{An}的通项公式.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:41:06
设数列{An}的前n项和Sn=2An-2^n 1.证明数列{A(n+1)-2An}是等比数列 2.求{An}的通项公式.
设数列{An}的前n项和Sn=2An-2^n 1.证明数列{A(n+1)-2An}是等比数列 2.求{An}的通项公式.
设数列{An}的前n项和Sn=2An-2^n 1.证明数列{A(n+1)-2An}是等比数列 2.求{An}的通项公式.
1.
因为数列{An}的前n项和Sn=2An-2^n.(1)
所以S(n+1)=2A(n+1)-2^(n+1).(2)
(2)-(1)得A(n+1)=2A(n+1)-2An-2^n
所以A(n+1)-2An=2^n
所以(A(n+2)-2A(n+1))/(A(n+1)-2An)=2^(n+1)/2^n=2
所以数列{A(n+1)-2An}是等比数列
2.
因为A(n+1)-2An=2^n
两边同时除以2^(n+1)得A(n+1)/2^(n+1)-An/2^n=1/2
所以数列{An/2^n}是个等差数列,公差为d=1/2
因为Sn=2An-2^n
所以S1=2A1-2^1 即A1=2A1-2^1 故A1=2
所以数列{An/2^n}的首项是A1/2^1=2/2=1
所以An/2^n=A1/2^1+(n-1)d=1+(n-1)/2=(n+1)/2
所以An=(n+1)*2^(n-1)
设数列an的前n项和为Sn,若Sn=1-2an/3,则an=
数列{an},中,a1=1/3,设Sn为数列{an}的前n项和,Sn=n(2n-1)an 求Sn
设数列{an}中前n项的和Sn=2an+3n-7则an=
设数列{an}中前n项的和Sn=2an+3n-7,则an=
设数列{an}的前n项和为sn=n^2,求a8
设数列{an}的前n项和Sn=2(an-3),证明{an}为等比数列,并求通项公式
设数列an的前n项和Sn.且Sn=2an-2,n属于正整数,(1)求数列an的通项公式,(2)设cn=n/an,求数列的前n项和Tn设数列an的前n项和Sn.且Sn=2an-2,n属于正整数,(1)求数列an的通项公式,(2)设cn=n/an,求数列的前n项和Tn
数列an的前n项和Sn满足:Sn=2n-an 求通项公式
已知数列{an}的前n项和为Sn,an+Sn=2,(n
高中数学. 设Sn是数列{an}的前n项和,且Sn=2an+n (1)证明:数列{an-1}是等高中数学. 设Sn是数列{an}的前n项和,且Sn=2an+n (1)证明:数列{an-1}是等比数列 (2)数列{bn}满足bn=1/(2-an),证明:b1+b2+.+bn<1
设数列an的前n项和为Sn,且2an=Sn+2n+1 求a1 a2 a3 求证:数列{an+2}是等比数列 求数列{n*an}的前n项和Tn
设数列an的前n项和为Sn,且2an=Sn+2n+1 求a1 a2 a3 求证:数列{an+2}是等比数列 求数列{n*an}的前n项和Tn
设Sn是数列an的前n项和,已知a1=1,an=-Sn*Sn-1,(n大于等于2),则Sn=
正数列{an}的前n项和为sn,且2根号sn=an+1 1、求an 2、设bn=1/an• an正数列{an}的前n项和为sn,且2根号sn=an+11、求an2、设bn=1/an• an+1,求{bn}的前n项和
已知数列{an}的前n项和为Sn,满足an+Sn=2n. (Ⅰ)证明:数列{an-2}为等比数列,并求出an;已知数列{an}的前n项和为Sn,满足an+Sn=2n.(Ⅰ)证明:数列{an-2}为等比数列,并求出an;(Ⅱ)设bn=(2-n)
设正整数数列{an}的前n项和Sn满足Sn=1/4(an+1)^2,求数列{an}的通项公式
设正数数列(an)的前n项和Sn满足Sn=1/4(an+1)^2 求 数列(an)的通项公式
数列{an}的通项公式an=log2(n+1)-log2(n+2),设{an}的前n项和为Sn,则使Sn