若A,B为实数,且a²+3a+1=0,b²+3b+1等于0,求a分之b加b分之a的值所用的定理请不要超过范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:42:45
若A,B为实数,且a²+3a+1=0,b²+3b+1等于0,求a分之b加b分之a的值所用的定理请不要超过范围
若A,B为实数,且a²+3a+1=0,b²+3b+1等于0,求a分之b加b分之a的值
所用的定理请不要超过范围
若A,B为实数,且a²+3a+1=0,b²+3b+1等于0,求a分之b加b分之a的值所用的定理请不要超过范围
注意到a,b都是方程x^2 +3x+1=0的根
所以a+b=-3 a*b=1
b/a+a/b
=(a^2+b^2)/ab
=((a+b)^2-2ab)/ab
=(9-2)/1
=7
以上是a,b不相等的情况
若a=b 则a/b+b/a=2
所以a/b+b/a=2或7