已知,a>0,b>0,求证1/(a+b)+1/(a+2b)+……+1/(a+nb)〈n/(sqrt(a+1/2b)(a+(n+1)/2b)).sqrt表示开方.希望各位兄弟姐妹们帮帮忙,答得好还会再加分!最好说的稍微详细点!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:58:01

已知,a>0,b>0,求证1/(a+b)+1/(a+2b)+……+1/(a+nb)〈n/(sqrt(a+1/2b)(a+(n+1)/2b)).sqrt表示开方.希望各位兄弟姐妹们帮帮忙,答得好还会再加分!最好说的稍微详细点!
已知,a>0,b>0,求证1/(a+b)+1/(a+2b)+……+1/(a+nb)〈n/(sqrt(a+1/2b)(a+(n+1)/2b)).sqrt表示开方.希望各位兄弟姐妹们帮帮忙,答得好还会再加分!最好说的稍微详细点!

已知,a>0,b>0,求证1/(a+b)+1/(a+2b)+……+1/(a+nb)〈n/(sqrt(a+1/2b)(a+(n+1)/2b)).sqrt表示开方.希望各位兄弟姐妹们帮帮忙,答得好还会再加分!最好说的稍微详细点!
∵[(a+b+……+m)/n]^2≤(aa+bb+……+mm)/n(正数均值的平方小于或等于他们平方的均值)
∴(a+b+……+m)^2≤n(aa+bb+……+mm)
运用这个重要不等式、
∴[1/(a+b)+1/(a+2b)+……+1/(a+nb)]^2<n{[1/(a+b)]^2+[1/(a+2b)]^2+……+[1/(a+nb)]^2}
<n{1/[(a+1/2b)(a+b)]+1/(a+b)(a+2b)+……+ 1/[a+(n-1)b](a+nb)}
<(n/b)*{1/(a+1/2b)-1/(a+b)+1/(a+b)-1/(a+2b)+
1/(a+3b)-1/(a+4b)+……+1/[a+(n-1)b]-1/(a+nb)}
<(n/b)*{1/(a+1/2b)-1/(a+nb)}
<(n/b)*{1/(a+1/2b)-1/(a+nb+1/2b)}
=(n/b)*{nb/[(a+1/2b)(a+nb+1/2b)]
=nn/[(a+1/2b)(a+nb+1/2b)]
<nn/{(a+1/2b)[a+(n+1)/2b)]}
即、[1/(a+b)+1/(a+2b)+……+1/(a+nb)]^2
<nn/{(a+1/2b)[a+(n+1)/2b)]}
开方即得结果,
以上有几步把分母变小、从而值变大.

求证还是求解呢?求证的话总得给个等式什么的吧。题目写错了??

归纳法

n/(sqrt(a+1/2b)(a+(n+1)/2b))
这个表示不明确。
b不是在分母吧???
否则,取a=1,b=0.1,n=1
左边=1/1.1
右边=1/√(1+5)(1+10)=1/√66
显然就不成立。
(a+(1/2)*b)(a+((n+1)/2)*b)再开方??
还是??

是一个整数