如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点过点D作DF⊥AE于点F,小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:48:22

如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点过点D作DF⊥AE于点F,小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一
如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点
过点D作DF⊥AE于点F,
小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一定存在除点E以外的点P,使△AOP也是等腰三角形,且点P一定在⊙O′外”.你同意他的看法吗?请充分说明理由.

如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点过点D作DF⊥AE于点F,小明在解答本题时,发现△AOE是等腰三角形.由此,他断定:“直线BC上一
不会存在,到o点与A点距离相等点在oa的中垂线上,两条直线相交只有一个交点,所以不 会存在,

∵E为BC的中点,
∴CE=BE.
又OC=AB,∠OCE=∠B=90°,
∴△ABE≌△OCE,
∴OE=AE.
连接O′D.
∵OE=AE,O′O=O′D,
∴∠EOD=∠EAO=∠O′DO.
∵DF⊥AE,∴∠EAO+∠ADF=90°.
∴∠O′DO+∠ADF=90°.
∴∠O′DF=90°,DF是⊙O′的切线;

如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2,E为BC的中点,以OE为直径的⊙O′交X轴于D点,过D点作DF⊥AE于F.
(1)求OA和OC的长;
(2)求证:OE=AE;
(3)求证:DF是⊙O′的切线;
(4)在边BC上是否存在除E点以外的P点,使△AOP是等腰三角形?如果存在,请写出P点的坐标;如果不存在,请说明理由.

下面...

全部展开

如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2,E为BC的中点,以OE为直径的⊙O′交X轴于D点,过D点作DF⊥AE于F.
(1)求OA和OC的长;
(2)求证:OE=AE;
(3)求证:DF是⊙O′的切线;
(4)在边BC上是否存在除E点以外的P点,使△AOP是等腰三角形?如果存在,请写出P点的坐标;如果不存在,请说明理由.

下面是解答

(1)设OC=x,则OA=x+2,根据题意得
x(x+2)=15.
解得x=3,即OC=3.则OA=5.

(2)证明:∵E为BC的中点,
∴CE=BE.
又OC=AB,∠OCE=∠B=90°,
∴△ABE≌△OCE,
∴OE=AE.

(3)证明:连接O′D.
∵OE=AE,O′O=O′D,
∴∠EOD=∠EAO=∠O′DO.
∵DF⊥AE,∴∠EAO+∠ADF=90°.
∴∠O′DO+∠ADF=90°.

∴∠O′DF=90°,DF是⊙O′的切线;



(4)存在.如图所示.
①当AP=AO时,BP=4,则CP=1,所以P(1,3);
②当OP=OA时,CP=4,所以P(4,3).

收起

存在。当PO=AO,,P(4,3) 当AO=AP....P(1,3)

如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=- 1 2 x2+bx+c经过如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=-2分之1 x2+bx+c经过矩形ABCO的顶点B、C,D为BC的 如图 四边形ABCO中在平面直角坐标系内,A(1,2)B(5,4)C(6,0)O(0,0),求四边形ABCO的面积 如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O′交轴于D点 如图在直角坐标系中放入一张矩形纸片ABCO 将纸片翻折后,点B恰好落在x轴的B'处,折痕CE. 如图 四边形ABCO中在平面直角坐标系内,A(1,2)B(5,4)C(6,0)O(0,0)如图 四边形ABCO中在平面直角坐标系内,A(1,2)B(5,4)C(6,0)O(0,0),求四边形ABCO的面积 如图,已知在平面直角坐标系中有直角梯形ABCO,BC‖OA,顶点B的坐标是(2,4),定点A的如图,已知在平面直角坐标系中有直角梯形ABCO,BC∥OA,顶点B的坐标是(2,4),定点A的坐标是(5,0),沿过点A的直线m 请解答如图,在平面直角坐标系中,直角梯形ABCO如图,在平面直角坐标系中,直角梯形ABCO,BC平行OA,顶点A的坐标为(6,0)BC=2/3OA,四边形OABC的面积为20(1)求直线AB的解析式.(2)点P从O出发,以每秒1 如图,在平面直角坐标系中,直角梯形ABCO如图,在平面直角坐标系中,直角梯形ABCO,BC平行OA,顶点A的坐标为(6,0)BC=2/3OA,四边形OABC的面积为20(1)求直线AB的解析式.(2)点P从O出发,以每秒1个单位 如图,在平面直角坐标系中,矩形AOBC的顶点O在坐标系原点,OB,OA分别在 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线A 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线A 如图,在平面直角坐标系中,四边形OABC 为矩形,点A、B 的坐标分别为(12,0)、(12,6如图,在平面直角坐标系中,矩形ABCO的边AB=6,BC=12,直线y=-3∕2x+b与y轴交于点P,与边BC交于点E,与边OA交于点D.(1) 如图6 在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B在坐标为(1,3)将矩形沿AC翻折,如图6 在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B在坐标为(1,3)将矩形沿AC翻折,B点落 如图,在直角坐标系中放入一个边长OA=10,OC=6的长方形纸片ABCO 如图在平面直角坐标系中 如图,在平面直角坐标系中,矩形ABCO的面积为15,边OA比OC大2.E为BC的中点,以OE为直径的⊙O'与x轴交于D点,过点D作DF⊥AE于点F(1)求OA,OC的长(2)求证DF为⊙O'的切线 如图,在平面直角坐标系中,直线y= 23x- 23与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是(  )A、6 B、3 C、12 D、 43 如图,在平面直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,c