已知集合M={(x,y)|x>0,y>0,x+y=k},其中k为正常数 ⑴求证:当k≥1,(1/x-x)(1/y-y)≤(k/2-2/k)的平方任意(x,y)属于M恒成立⑵使不等式(1/x-x)(1/y-y)≥(k/2-2/k)的平方对任意(x,y)属于M恒成立k范围
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:32:54
已知集合M={(x,y)|x>0,y>0,x+y=k},其中k为正常数 ⑴求证:当k≥1,(1/x-x)(1/y-y)≤(k/2-2/k)的平方任意(x,y)属于M恒成立⑵使不等式(1/x-x)(1/y-y)≥(k/2-2/k)的平方对任意(x,y)属于M恒成立k范围
已知集合M={(x,y)|x>0,y>0,x+y=k},其中k为正常数 ⑴求证:当k≥1,(1/x-x)(1/y-y)≤(k/2-2/k)的平方
任意(x,y)属于M恒成立
⑵使不等式(1/x-x)(1/y-y)≥(k/2-2/k)的平方对任意(x,y)属于M恒成立k范围
已知集合M={(x,y)|x>0,y>0,x+y=k},其中k为正常数 ⑴求证:当k≥1,(1/x-x)(1/y-y)≤(k/2-2/k)的平方任意(x,y)属于M恒成立⑵使不等式(1/x-x)(1/y-y)≥(k/2-2/k)的平方对任意(x,y)属于M恒成立k范围
因为y=f(x)是奇函数,所以y=f(x)关于原点对称 即f(-x)=-f(x)
又因为x∈(0,2)时,f(x)=lnx-ax(a>1/2),
所以(-x)∈(-2,0)时,f(-x)=-f(x),即f(-x)=-lnx+ax
即x∈(-2,0)是f(x)=-ln(-x)-ax=-(ln(-x)+ax)
令g=ln(-x)和k=ax在x∈(-2,0)显然是递增的
所以g+k在x∈(-2,0)也是递增的,即 ln(-x)+ax在x∈(-2,0)是递增的
所以f(x)=-(ln(-x)+ax)是递减的
当x=-2时 f(x)的值最小,即f(-2)=-(ln2-2a)=1
解得:a=(1+ln2)/2
高中数学好多年不做忘了哦。。
k小于或=6
此次监控存储空间
1.t=xy=x(k-x) 利用数性结合 (x,y)|x>0,y>0,x+y=k可以得到x属于【0,k】
t属于【0,k平方/4]
2.(1/x-x)(1/y-y)=1/xy+xy-2<=[1/2k^(1/2)+2k^91/2)-2] 楼主 根号 平方之类的不会打
第二小题利用基本不等式x+y=k 化成xy 和k的关系 然后 左右两式相减即可得(1/x-x)(1/y-...
全部展开
1.t=xy=x(k-x) 利用数性结合 (x,y)|x>0,y>0,x+y=k可以得到x属于【0,k】
t属于【0,k平方/4]
2.(1/x-x)(1/y-y)=1/xy+xy-2<=[1/2k^(1/2)+2k^91/2)-2] 楼主 根号 平方之类的不会打
第二小题利用基本不等式x+y=k 化成xy 和k的关系 然后 左右两式相减即可得(1/x-x)(1/y-y)<=(k/2-2/k)^2 记住k>=1
3.第三题和第二小题原理一样 利用基本不等式
收起
不会,不好意思
如图