如图,已知在三角形ABC中,角BAC为直角,AB=AC,D为AC上一点,CE垂直BD于E.已知在三角形ABC中,角BAC为直角,AB=AC,D为AC上一点,CE垂直BD于E,若BD平分角ABC,求证:(1)CE=二分之一BD.(2)若D为AC上一动点,角AED
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:47:01
如图,已知在三角形ABC中,角BAC为直角,AB=AC,D为AC上一点,CE垂直BD于E.已知在三角形ABC中,角BAC为直角,AB=AC,D为AC上一点,CE垂直BD于E,若BD平分角ABC,求证:(1)CE=二分之一BD.(2)若D为AC上一动点,角AED
如图,已知在三角形ABC中,角BAC为直角,AB=AC,D为AC上一点,CE垂直BD于E.
已知在三角形ABC中,角BAC为直角,AB=AC,D为AC上一点,CE垂直BD于E,若BD平分角ABC,求证:(1)CE=二分之一BD.(2)若D为AC上一动点,角AED如何变化,若变化,求他的变化范围;若不变,求他的度数,并说明理由
不要理由。
如图,已知在三角形ABC中,角BAC为直角,AB=AC,D为AC上一点,CE垂直BD于E.已知在三角形ABC中,角BAC为直角,AB=AC,D为AC上一点,CE垂直BD于E,若BD平分角ABC,求证:(1)CE=二分之一BD.(2)若D为AC上一动点,角AED
2010-9-13 21:09 解析:两种情况,
当高AD在CB的延长线上时,
在Rt△ABD中,AB^2=AD^2+BD^2,
得BD^2=15^2-12^2=81,
∴BD=9,
在Rt△ACD中,AC^2=AD^2+CD^2,
得CD^2=20^2-12^2=16^2,
∴CD=16,
则BC=CD-BD=16-9=7,
实质此情形为钝角三角形.另种情形为锐角三角形.
延长CE,BA交于F
所以△BCE全等于△BFE(ASA),
所以CE=FE,所以CF=2CE
因为角ADB=角=EDC,
因为等角的余角相等所角ABD=角ACF
所以△ABD全等于△ACF(ASA),所以BD=CF=2CE
所以CE=1/2BD