在y=2x²上有一点P,它到A(1,3)的距离与它到焦点的距离之和最小,则点p的坐标是?算得错了,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 11:30:06
在y=2x²上有一点P,它到A(1,3)的距离与它到焦点的距离之和最小,则点p的坐标是?算得错了,
在y=2x²上有一点P,它到A(1,3)的距离与它到焦点的距离之和最小,则点p的坐标是?算得错了,
在y=2x²上有一点P,它到A(1,3)的距离与它到焦点的距离之和最小,则点p的坐标是?算得错了,
把抛物线的解析式y = 2x² 变为 x² = (1/2)y,
与标准形式 x² = 2py 对照,易知:
2p = 1/2.
∴ p = 1/4.
∴抛物线x² = (1/2)y 的准线方程为L:y = -- p/2 = -- 1/8.
说明:对于抛物线 x² = 2py(p >0) ,
其焦点为F(0,p/2),其准线方程为L:y = -- p/2.
由抛物线定义知:抛物线上任意一点到准线距离等于到焦点距离.
∴ 点P 到焦点的距离等于点P 到准线的距离.
分析点A与已知抛物线y=2x² 的位置关系:
在y=2x²中,当x = 1 时,y = 2,
而点A(1,3),
∴ 点A在抛物线内.
过点A作准线的垂线,垂足为B,
设线段AB与抛物线及 x轴 分别交于点M、点N,
∵AB ⊥准线 y = -- 1/8,而点A的纵坐标为3,
∴AN = 3 且点M的横坐标与点A的横坐标相同均为1.
把 x=1代入y=2x² 得 y=2,
∴点M的纵坐标为2.
∴点M的坐标为(1,2).
下面分析“距离之和最小”问题:
在抛物线y=2x²上任取一点P,
过P作准线的垂线,垂足为Q,
过P作AB的垂线,垂足为H,
在Rt△PAH中,斜边大于直角边,则 |PA| > |AH|.
在矩形PQBH中,|PQ| = |HB|,
∴ |PA| + |PF|(这里设抛物线的焦点为F)
=|PA| + |PQ|
>|AH| + |HB| = |AB|.
即:抛物线上任意一点P到A的距离与它到焦点的距离之和最小为|AB|.
此时点P与点M重合,其坐标为P(1,2).
如果直接说“过A作准线的垂线 垂足为B,
则当P是AB与抛物线的交点时,距离和最小”不易理解.
祝您学习顺利!