抛物线y=-x^2/2与过点M(0,1)的直线l交于A,B两点,O为原点,若OA和OB的斜率之和为1,求直线l的方程RT

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 20:53:15

抛物线y=-x^2/2与过点M(0,1)的直线l交于A,B两点,O为原点,若OA和OB的斜率之和为1,求直线l的方程RT
抛物线y=-x^2/2与过点M(0,1)的直线l交于A,B两点,O为原点,若OA和OB的斜率之和为1,求直线l的方程
RT

抛物线y=-x^2/2与过点M(0,1)的直线l交于A,B两点,O为原点,若OA和OB的斜率之和为1,求直线l的方程RT
个人感觉是不存在这样的直线l.
假设存在,亦知l与x轴垂直时不满足条件,l与x轴平行时亦不满足条件,所以可以设出l的方程为y=kx+1,与抛物线方程y=-x^2/2联立,整理得:x^2+2kx+2=0
因为直线与抛物线交于两点,所以该方程的Δ>0,即有k^2>2
设A坐标为(x1,y1),B(x2,y2)
则有x1+x2=-2k,x1x2=2
已知kOA+kOB=1,所以y1/x1+y2/x2=1
而y1=kx1+1,y2=kx2+1,代入整理得:(kx1+1)x2+(kx2+1)x1=x1x2
(2k-1)x1x2+(x1+x2)=0,代入x1+x2,x1x2,可得2(2k-1)-2k=0,k=1
不满足k^2>2的条件,故不存在这样的直线l.

点M(4,0)以点M为圆心、2为半径的圆与x轴交与点A,B,已知抛物线y=1/6x^2+bx+c过点A和B,与y轴交与点C点Q(8,m)在抛物线y=1/6x^2+bx+c上,点P为此抛物线对称轴上的一个动点,求PQ+PB的最小值CE是过点C的 设抛物线y^2=2x的焦点为F,过点M(√ ̄3,0)的直线与抛物线相交与A.B两点 如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交与点A、B.已知抛物线y=1/6x²+bx+c上如图,点M(4,0),以点M为圆心、2为半径的圆与x轴交与点A、B.已知抛物线y=1/6x²+bx+c过点A和点B,与y轴交 已知抛物线y^2=4x,过点M(-1,0)作一条直线l与抛物线相交于不同的两点A,B,点A关于x轴对称点为C,求证直线BC过定点 已知抛物线y=x的平方-mx-6m的平方(m不等于0) (1)求证:该抛物线与x轴有两个不同已知抛物线y=x的平方-mx-6m的平方(m不等于0) (1)求证:该抛物线与x轴有两个不同的交点.(2)过点P(0,n)作y轴的垂线 设抛物线y=ax^2+bx-2与X轴交于两个不同的点A(-1,0)、B(m,0),与y轴交于点C,且∠ACB=90° 1,求m的值和抛物线的解析式 2,已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E.若点P在X轴上 设抛物线y=ax^2+bx-2与x轴交于两个不同的点A(-1,0),B(m,0),与y轴交于点C,且∠ACB=90°.(1)求m的值和抛物线的解析式;(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另一点E.若点P在x轴 过点(1,0)作倾斜角4分之π的直线,与抛物线y²=2x交于M.N两点,则|MN|= 过点P(0,2)的直线与抛物线y=x^2+1有几个公共点 设抛物线y=ax的平方+bx-2与,设抛物线y=ax^2+bx-2与X轴交于两个不同的点A(-1,0)、B(m,0),与y轴交于点C,且∠ACB=90° 1,求m的值和抛物线的解析式 2,已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物 过点(0,1)与抛物线y^2=mx只有一个公共交点的直线有几条 (m>0) 设抛物线y^2=2x的焦点为F,过点M(根号3,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交与C,|BF| 如图,设抛物线y=ax2+bx+c与X轴交与两个不同的点A(-1,0),B(m,0),与Y轴交与点C(0,-2),且∠ACB=90°.(1)求m 的值和抛物线的解析式.(2)已知点D(1,n)在抛物线上,过点A的直线y=x+1交抛物线于另 已知抛物线y=x2+mx-2m2(m≠0).(1)求证:该抛物线与x轴有两个不同的交点;(2)过点P(0,n)作y轴的垂线交该抛物线于点A和点B(点A在点P的左边),是否存在实数m、n,使得AP= 已知抛物线y=ax^2-3ax+41.若抛物线与x轴交于A(-1,0)、B两点,且过第一象限上点D(m,m+1),求sin角DAB 如图,已知抛物线的方程C1:y=-1/m(x+2)(x-2m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)条件下,在抛物线的对称 已知抛物线Y=x2+mx-2m2(m≠0). (1)求证:该抛物线与X轴有两个不同的交点; (2)过点P(0,n)作Y 设抛物线y=ax的平方+bx-2与x轴交与两个不同的点A(-1,0)B(m,0),与y轴交与点C,且∠ACB=90(1)求m的值(2)求抛物线的解析式,并验证D(1,-3)是否在抛物线上(3)已知过点A的直线y=x+1叫抛物线与