如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=-2x+12,①求点C的坐标;②求△OAC的面积.(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:06:15
如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=-2x+12,①求点C的坐标;②求△OAC的面积.(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,
如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.
(1)若直线AB解析式为y=-2x+12,
①求点C的坐标;
②求△OAC的面积.
(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,△OAC的面积为6,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,试探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.
如图,在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于点C.(1)若直线AB解析式为y=-2x+12,①求点C的坐标;②求△OAC的面积.(2)如图,作∠AOC的平分线ON,若AB⊥ON,垂足为E,
(1)①由题意,y=-2x+12,y=x
\x09解得x=4,y=4所以C(4,4)
\x09②令y=0,-2x+12=0,解得x=6,∴A(6,0)
∴OA=6
∴S△OAC=1/2×6×4=12
\x09
(2)由题意,在OC上截取OM=OP,连结MQ,
\x09∵OP平分,∴∠AOQ=∠COQ
\x09又OQ=OQ,∴△POQ≌△MOQ(SAS),
\x09∴PQ=MQ,∴AQ+PQ=AQ+MQ,
\x09当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
\x09即AQ+PQ存在最小值.
\x09∵AB⊥ON,所以,∠AEO=∠CEO
\x09∴△AEO≌△CEO(ASA),∴OC=OA=4,
\x09∵△OAC的面积为6,所以,AM=2×6÷4=3
\x09∴AQ+PQ存在最小值,最小值为3.
1.因为直线AB解析式为y=-2x+12
所以A(6,0)B(0,12)
与直线OC:y=x交于点C.
令-2x+12=x
解得x=4
所以C(4,4)
S△OAC=1/2OA。4=12
2、
(1)①由题意,y=-2x+12,y=x
解得x=4,y=4所以C(4,4)
②令y=0,-2x+12=0,解得x=6,∴A(6,0)
∴OA=6
∴S△OAC=1/2×6×4=12
(2)由题意,在OC上截取OM=OP,连接MQ,
∵ON平分∠AOC,∴∠AOQ=∠COQ
又∵OQ=OQ,∴△POQ≌△MOQ(SAS)...
全部展开
(1)①由题意,y=-2x+12,y=x
解得x=4,y=4所以C(4,4)
②令y=0,-2x+12=0,解得x=6,∴A(6,0)
∴OA=6
∴S△OAC=1/2×6×4=12
(2)由题意,在OC上截取OM=OP,连接MQ,
∵ON平分∠AOC,∴∠AOQ=∠COQ
又∵OQ=OQ,∴△POQ≌△MOQ(SAS),
∴PQ=MQ,∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
即AQ+PQ存在最小值.
∵AB⊥ON,∴∠AEO=∠CEO
∴△AEO≌△CEO(ASA),∴OC=OA=4,
∵△OAC的面积为6,∴AM=2×6÷4=3
∴AQ+PQ存在最小值,最小值为3.
收起
(1)①由题意,y=-2x+12,y=x
解得x=4,y=4所以C(4,4)
②令y=0,-2x+12=0,解得x=6,∴A(6,0)
∴OA=6
∴S△OAC=1/2×6×4=12
(2)由题意,在OC上截取OM=OP,连结MQ,
∵OP平分,∴∠AOQ=∠COQ
又OQ=OQ,∴△POQ≌△MOQ(SAS),
全部展开
(1)①由题意,y=-2x+12,y=x
解得x=4,y=4所以C(4,4)
②令y=0,-2x+12=0,解得x=6,∴A(6,0)
∴OA=6
∴S△OAC=1/2×6×4=12
(2)由题意,在OC上截取OM=OP,连结MQ,
∵OP平分,∴∠AOQ=∠COQ
又OQ=OQ,∴△POQ≌△MOQ(SAS),
∴PQ=MQ,∴AQ+PQ=AQ+MQ,
当A、Q、M在同一直线上,且AM⊥OC时,AQ+MQ最小.
即AQ+PQ存在最小值.
∵AB⊥ON,所以,∠AEO=∠CEO
∴△AEO≌△CEO(ASA),∴OC=OA=4,
∵△OAC的面积为6,所以,AM=2×6÷4=3
∴AQ+PQ存在最小值,最小值为3.
收起
这本身就是一道错题