如图,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°(1)求证:∠DAF+∠BAE=45°(2)若BG:FG=1:2,AB=根号5,求DF的长

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:44:04

如图,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°(1)求证:∠DAF+∠BAE=45°(2)若BG:FG=1:2,AB=根号5,求DF的长
如图,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°

(1)

求证:∠DAF+∠BAE=45°

(2)若BG:FG=1:2,AB=根号5,求DF的长

如图,正方形ABCD中,E为BC上一点,过B作BG⊥AE于G,延长BG至点F使∠CFB=45°(1)求证:∠DAF+∠BAE=45°(2)若BG:FG=1:2,AB=根号5,求DF的长
1、过C点作BF的垂线,垂足为H点,
则∠FCH=45,∴HF=HC,
∵AE⊥BG,
∴易证:∠BAG=∠CBH
∴易证:△BAG≌△CBH
∴AG=BH,BG=CH
∴BG=FH
∴AG=FG
2、连接AF,由1、结论得:
AG=FG,∴△AGF是等腰直角△
而∠BFC=45°,∴∠AFM=90°
∴△AFM也是等腰直角△
∴AG=MG=FG,
∴AB=MB=10=AD=DC,
由1、结论得:BG=FH=CH
∵C点是FM中点,
∴CH是△FGM的中位线,
∴FH=GH
∴BG=GH=HF,
同理:GE是△BHC的中位线,
∴BE=CE=5,
设BG=a,则FG=AG=MG=2a
∴由勾股定理得:a=2√5
∴AM=4a=8√5
分别延长AM、DC,相交于N点,
∵CE∥DA,且CE=½DA
∴DC=NC=10,而CF=CM,
∴易证:△DFC≌△NMC
∴FD=NM
由勾股定理得:AN=10√5
∴MN=AN-AM=10√5-8√5=2√5
即FD=2√5

已知,如图,正方形abcd中,E为BC上一点,AF平分 已知:如图,正方形ABCD中,E为BC上一点,AF平分已知:如图,正方形ABCD中,E为BC上一点,AF平分∠DAE交CD于F,求证:AE=BE+DF 如图,正方形ABCD中,E为BC上一点,AF平分∠DAE,求证:BE+DF=AE 如图,在正方形ABCD中,E为AB上一点,F为BC上一点,且AE+CF=EF 求证:∠EDF=45° 如图,正方形ABCD中,E为AB上一点,F为BC上一点,且AE+CF=EF.求证:∠EDF=45° 如图,在正方形ABCD中,E为CD的中点,F为BC上的一点,且CF=1/4BC,试说明:AE垂直EF 如图,在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=1/4BC.求证:AE⊥EF. 如图,在正方形ABCD中,E为ab的中点,f为bc上的一点,且bf=4分之一bc,求证:de垂直ef 如图,在正方形ABCD中,F为DC的中点,E为BC上的一点,且EC=四分之一BC,求证∠EFA=90 如图,在正方形ABCD中,F为DC的中点,E为BC上的一点,且EC=四分之一BC,求证∠EFA=90度 如图,在正方形ABCD中,F为DC的终点,E为BC上一点,且EC等于四分之一BC,求证角EFA等于90度 如图,在正方形ABCD中,F为DC的中点,E为BC上的一点,且EC=四分之一BC,求证∠EFA=90 如图;在正方形ABCD中,F为DC的中点,E为BC上一点,且EC=1/4BC,求证;角EFA=90° 如图,在正方形ABCD中,F为DC中点,E为BC上一点,且EC=1/4BC,证明∠AFE=90° 如图在正方形ABCD中,F为CD的中点,E为BC上的一点,且EC=四分之一BC 求证∠AFE=90° 如图,在正方形ABCD中,E为CD的中点,F为BC上一点,且CF=?BC,试说明AE⊥EF. 如图在正方形ABCD中,E为AB中点,F是BC上一点,且BF=1/4BC,求证DE⊥EF 如图在正方形ABCD中,E为DC的中点,F是BC上的一点,且CF=1/4BC,求证 AE平分角DAF