1.设向量a=(1,0),b=(cosθ,sinθ),其中0≤θ≤π,则|a-b|的最大值是_____.2.2.已知n∈Z,在下列三角函数中,与sin数值相同的是( )①sin(nπ+);②cos(2nπ+);③sin(2nπ+);④cos[(2n+1)π-];⑤sin[(2n+1)π-].A.①② B.①
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:18:51
1.设向量a=(1,0),b=(cosθ,sinθ),其中0≤θ≤π,则|a-b|的最大值是_____.2.2.已知n∈Z,在下列三角函数中,与sin数值相同的是( )①sin(nπ+);②cos(2nπ+);③sin(2nπ+);④cos[(2n+1)π-];⑤sin[(2n+1)π-].A.①② B.①
1.设向量a=(1,0),b=(cosθ,sinθ),其中0≤θ≤π,则|a-b|的最大值是_____.
2.
2.已知n∈Z,在下列三角函数中,与sin数值相同的是( )
①sin(nπ+);②cos(2nπ+);③sin(2nπ+);④cos[(2n+1)π-];
⑤sin[(2n+1)π-].
A.①② B.①③④ C.②③⑤ D.①③⑤
1.设向量a=(1,0),b=(cosθ,sinθ),其中0≤θ≤π,则|a-b|的最大值是_____.2.2.已知n∈Z,在下列三角函数中,与sin数值相同的是( )①sin(nπ+);②cos(2nπ+);③sin(2nπ+);④cos[(2n+1)π-];⑤sin[(2n+1)π-].A.①② B.①
此题第2问没有正确答案:
1
|a-b|^2=(a-b) dot (a-b)=|a|^2+|b|^2-2(a dot b)=1+1-2cosθ=2-2cosθ
当cosθ=-1时,|a-b|取得最大值:2
2
当n=2k时,sin(nπ+θ)=sin(2kπ+θ)=sinθ
当n=2k+1时,sin(nπ+θ)=sin(2kπ+π+θ)=sin(π+θ)=-sinθ
cos(2nπ+θ)=cosθ
sin(2nπ+θ)=sinθ
cos((2n+1)π-θ)=cos(π-θ)=-cosθ
sin((2n+1)π-θ)=sin(π-θ)=sinθ
所以,只有③⑤满足条件,无正确答案.
1
a-b=(1-cosθ,-sinθ)
|a-b|=√[(1-cosθ)²+sin²θ]=√(2-2cosθ)≤2
2
???这道题实在不懂 请在追问或补问中提出
1.a-b=(1-cosθ,-sinθ)
|a-b|=√[(1-cosθ)²+sin²θ]=√(2-2cosθ)≤√4=2
2.①sin(nπ+a)=-sina或sina
②cos(2nπ+a)=cosa
③sin(2nπ+a)=siba
④cos[(2n+1)π-a]=cos[π-a]=-cosa
⑤sin[(2n+1)π-a]=sin[π-a]=sina.
所以,选D
最大值是2