1/1x3=1/2(1-1/3),1/3x5=1/2(1/3-1/5),1/5x7=1/2(1/5-1/7),……,1/17x19=1/2(1/17-1/19).∴1/1x3+1/3x5+1/5x7+……+1/17x19=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+……+1/2(1/17-1/19)=1/2 (1-1/3+1/3-1/5+1/5-1/7+……+1/17-1/19)=1/2(1-1/19)=9/19根据以

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:36:05

1/1x3=1/2(1-1/3),1/3x5=1/2(1/3-1/5),1/5x7=1/2(1/5-1/7),……,1/17x19=1/2(1/17-1/19).∴1/1x3+1/3x5+1/5x7+……+1/17x19=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+……+1/2(1/17-1/19)=1/2 (1-1/3+1/3-1/5+1/5-1/7+……+1/17-1/19)=1/2(1-1/19)=9/19根据以
1/1x3=1/2(1-1/3),1/3x5=1/2(1/3-1/5),1/5x7=1/2(1/5-1/7),……,1/17x19=1/2(1/17-1/19).∴1/1x3+1/3x5+1/5x7+……+1/17x19
=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+……+1/2(1/17-1/19)
=1/2 (1-1/3+1/3-1/5+1/5-1/7+……+1/17-1/19)
=1/2(1-1/19)
=9/19
根据以上材料,回答下列问题:
(1)在式子1/1x3+1/3x5+1/5x7+……中第五项是________
(2)写出第n个 等式,并证明
(3)当m=4时计算1/m(m+4)=1/(m+4)(m+8)+.+1/(m+92)(m+96)的值

1/1x3=1/2(1-1/3),1/3x5=1/2(1/3-1/5),1/5x7=1/2(1/5-1/7),……,1/17x19=1/2(1/17-1/19).∴1/1x3+1/3x5+1/5x7+……+1/17x19=1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+……+1/2(1/17-1/19)=1/2 (1-1/3+1/3-1/5+1/5-1/7+……+1/17-1/19)=1/2(1-1/19)=9/19根据以
你写的实在有点乱,应注意用括号!
(1)在式子1/(1x3)+1/(3x5)+1/(5x7)+……中第五项是1/(9×11);
  (2)1/(1x3)+1/(3x5)+1/(5x7)+……+1/[(2n-1)(2n+1)]
  =1/2(1-1/3)+1/2(1/3-1/5)+1/2(1/5-1/7)+……+1/2[1/(2n-1)-1/(2n+1)]
  =1/2 [1-1/3+1/3-1/5+1/5-1/7+……+1/(2n-1)-1/(2n+1)]
  =1/2[1-1/(2n+1)]
  =n/(2n+1)
  (3)1/m(m+4)+1/(m+4)(m+8)+.+1/(m+92)(m+96)
  =1/4【1/m-1/(m+4)】+1/4【1/(m+4)-1/(m+8)】+.+1/4【1/(m+92)-1/(m+96)】
  =1/4【1/m-1/(m+4)+1/(m+4)-1/(m+8)+.+1/(m+92)-1/(m+96)】
  =1/4【1/m-1/(m+96)】
  当m=4时,原式=1/4(1/4-1/100)=1/4×24/100=3/50

第一二题太简单了就不说了,最后一题第二个等号应该是加号,可以像上面一样分解,1/m(m+4)=1/4(1/m-1/(m+4),最后=1/4(1/m-1/(96+m))

你需要用程序实现吗?