设函数f(x)=ax^2+bx+1(a≠0,b∈R),若f(-1)=0,且对任意实数x(x∈R)不等式f(x) ≥0恒成立,求a,b

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:51:18

设函数f(x)=ax^2+bx+1(a≠0,b∈R),若f(-1)=0,且对任意实数x(x∈R)不等式f(x) ≥0恒成立,求a,b
设函数f(x)=ax^2+bx+1(a≠0,b∈R),若f(-1)=0,且对任意实数x(x∈R)不等式f(x) ≥0恒成立,求a,b

设函数f(x)=ax^2+bx+1(a≠0,b∈R),若f(-1)=0,且对任意实数x(x∈R)不等式f(x) ≥0恒成立,求a,b
∵f(x)=ax^2+bx+1,∴f(-1)=a-b+1=0,∴b=a+1.
∴f(x)=ax^2+(a+1)x+1,而f(x)≧0恒成立,∴需要a>0,且(a+1)^2-4a≦0,
∴a^2+2a+1-4a≦0,∴(a-1)^2≦0,∴a=1,∴b=a+1=2.
∴满足条件的a、b的值分别是1、2.

刚才看错题目。。