拜托如图已知在Rt△ABC中,∠ACB=Rt∠,以斜边上的高线CO于斜边AB为轴建立直角坐标系已知OA等于1,AC=根号51.求OC的长2.求证△AOC∽△COB3.求经过A.B.C三点的抛物线解析式4.以BC为直径的圆上是否存

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:37:54

拜托如图已知在Rt△ABC中,∠ACB=Rt∠,以斜边上的高线CO于斜边AB为轴建立直角坐标系已知OA等于1,AC=根号51.求OC的长2.求证△AOC∽△COB3.求经过A.B.C三点的抛物线解析式4.以BC为直径的圆上是否存
拜托如图已知在Rt△ABC中,∠ACB=Rt∠,以斜边上的高线CO于斜边AB为轴建立直角坐标系已知OA等于1,AC=根号5
1.求OC的长
2.求证△AOC∽△COB
3.求经过A.B.C三点的抛物线解析式
4.以BC为直径的圆上是否存在点D,使得△BCD△AOC相似,若存在,请直接写出点D的坐标,不存在,说明理由
↖(^ω^)↗

拜托如图已知在Rt△ABC中,∠ACB=Rt∠,以斜边上的高线CO于斜边AB为轴建立直角坐标系已知OA等于1,AC=根号51.求OC的长2.求证△AOC∽△COB3.求经过A.B.C三点的抛物线解析式4.以BC为直径的圆上是否存
OC=√AC^2-AO^2=√5-1=2
∵∠BCO+∠ACO=90°
∠ACO+∠A=90°
∴∠BCO=∠A
∵∠B+BCO=90°
∴∠B=∠ACO
∵∠COB=∠COA=90°
∴△AOC∽△COB

1.在直角三角形AOC中
根据勾股定理:CO=根号(AC的平方-AO的平方)=2
2.因为角A+角B=90度
角A+角ACO=90度
所以角ACO=角B
又因为角AOC=角BOC=90度
所以三角形ACO相似于三角形COB
相信你:-)
3.以BA为x轴,以AB过C点垂线为y轴,建平面直角坐标系有B(-4,0) A(1,0) ...

全部展开

1.在直角三角形AOC中
根据勾股定理:CO=根号(AC的平方-AO的平方)=2
2.因为角A+角B=90度
角A+角ACO=90度
所以角ACO=角B
又因为角AOC=角BOC=90度
所以三角形ACO相似于三角形COB
相信你:-)
3.以BA为x轴,以AB过C点垂线为y轴,建平面直角坐标系有B(-4,0) A(1,0) C(0,根号5)
设抛物线方程方程为
y=ax的平方+bx+c代入上式三点得a=5/4 b=25/4 c=5
所以y=…自己写吧

收起

已知如图在RT△ABC中,∠ACB=90°,CA=CB 已知如图在RT△ABC中,∠ACB=90°,CA=CB 已知如图在Rt△ABC中∠ACB=90°CE⊥AB垂足为D 求证:∠A=∠DCB 已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,求∠A=∠DCB 如图,已知:在Rt△ABC中,∠ACB=90°∠B=30°,CD⊥AB于D.求证:AD=¼AB. 如图,已知:在Rt△ABC中,∠ACB=90°∠B=30°,CD⊥AB于D.求证:AD=¼AB. 如图 在rt △abc中 ∠acb=90°,cd垂直ab于d,已知ad=4,bd=1求cd的长 已知如图,在Rt△ABC中,∠ACB=90°,CD垂直AB于D,AB=13,BC=5,求CD的长. 如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,说明AC^2/BC^2=AD/DB. 已知如图在RT△ABC中,∠ACB=90°,∠BAC=30°,∠ACB的平分线与∠ABC的外角平分线交于E点,求∠AEB的度数. 已知:如图,在Rt三角形abc中,∠acb=Rt∠,∠a=30°,cd⊥ab于点d,求证三角形abc相似三角形cdb已知:如图,在Rt三角形abc中,∠acb=Rt∠,∠a=30°,cd⊥ab于点d,求证三角形abc相似三角形cdb 已知:如图,在Rt三角形ABC中,∠ACB=Rt∠,AC=4,BC=3,求证:四边形EGFH是平行四边形图是对的。抱歉抱歉抱歉,题目应该是:已知:如图,在Rt三角形ABC中,∠ACB=Rt∠,AC=4,BC=3,将三角形ABC平移到三角形A'B'C', 如图,在Rt△ABC中,∠ACB=90°,D,E是AB上的点 已知:如图,在Rt△ABC中,∠ACB=Rt∠,AC=4,BC=3将△ABC沿AB方向平移至△A'B'C',使A'C'经过BC的中点D (1)求已知:如图,在Rt△ABC中,∠ACB=Rt∠,AC=4,BC=3将△ABC沿AB方向平移至△A'B'C',使A'C'经过BC的中点D(1)求证:A 已知:如图,在Rt△ABC中,∠ACB=Rt∠,AC=4,BC=3将△ABC沿AB方向平移至△A'B'C',使A'C'经过BC的中点D (1)求已知:如图,在Rt△ABC中,∠ACB=Rt∠,AC=4,BC=3将△ABC沿AB方向平移至△A'B'C',使A'C'经过BC的中点D(1)求证:A 如图,已知在Rt三角形ABC中,角ACB=90°,AC=12,BC=5, 已知,如图,在Rt△ABC中,∠ACB=90°,AC=BC,CD、AE分别平分∠ACB、∠BAC,且相交于点F.求证:AE:AF=根号2 已知,如图,在Rt△ABC中,∠ACB=90°,AC=BC,CD、AE分别平分∠ACB、∠BAC,且相交于点F.求证:AE:AF=根号2