设向量a=(√3sinx,cosx),b=(cosx,cosx).记f(x)=向量a乘以向量b⑴简化函数f(x)的形式,并求其最小正周期;⑵若x∈[-π/6,π/3]时,函数g(x)=f(x)-m的最小值为2,求函数g(x)的最大值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:29:56
设向量a=(√3sinx,cosx),b=(cosx,cosx).记f(x)=向量a乘以向量b⑴简化函数f(x)的形式,并求其最小正周期;⑵若x∈[-π/6,π/3]时,函数g(x)=f(x)-m的最小值为2,求函数g(x)的最大值
设向量a=(√3sinx,cosx),b=(cosx,cosx).记f(x)=向量a乘以向量b
⑴简化函数f(x)的形式,并求其最小正周期;
⑵若x∈[-π/6,π/3]时,函数g(x)=f(x)-m的最小值为2,求函数g(x)的最大值
设向量a=(√3sinx,cosx),b=(cosx,cosx).记f(x)=向量a乘以向量b⑴简化函数f(x)的形式,并求其最小正周期;⑵若x∈[-π/6,π/3]时,函数g(x)=f(x)-m的最小值为2,求函数g(x)的最大值
f(x)=向量a乘以向量b
=√3sinxcosx+cos^2x
=(√3/2)sin2x+(1/2)*(cos2x+1).正弦余弦二倍角
=(√3/2)sin2x+(1/2)*cos2x+1/2
=sin(2x+π/6)+1/2.辅助角公式
最小正周期=2π/2=π
(2)
x∈[-π/6,π/3]
2x+π/6∈[-π/6,5π/6]
sin(2x+π/6)∈[-1/2,1]
∴sin(2x+π/6)+1/2∈[0,3/2]
g(x)=f(x)-m的最小值=2
∴0-m=2
m=-2
∴g(x)=f(x)+2
最大值=3/2+2=7/2
设向量A=(sinx,√3cosx),B=(cosx,cosx),(0
设向量A=(sinx,√3cosx),B=(cosx,cosx),(0
设向量a=(cosx,-√3sinx),向量b=(√sinx,-cosx)函数f(x)=向量a*向量b-1,求f(x)
已知向量a=(2cosx,√3sinx),向量b=(3cosx,-2cosx),设∫ (x)=向量ab+2
设向量a=(sinX,4cosX),向量b=(cosX,-4sinX),求|向量a+向量b|的最大值
已知向量a=(2cosx,sinx)向量b={cos(x-π/3),√3cosx-sinx}求f(x)的解析式(详细一点)已知向量a=(2cosx,sinx),向量b={cos(x-π/3),√3cosx-sinx},设函数f(x)=向量a·向量b,求f(x)的表达式
设向量a=(cosx,-√3sinx),b=(√3sinx,-cosx),函数f(x)=a.b-1,求f(x)的值域
设向量a=(2sinx,2cosx),向量b=(cosx,-根号3cosx),设f(x)=向量向设向量a=(2sinx,2cosx),向量b=(cosx,-根号3cosx),设f(x)=向量a乘以向量b+根号3.求函数y=f(x)的单调递增区间
向量a=(2cosx,sinx),向量b={cos(x-π/3),√3cosx-sinx},设函数f(x)=向量a·向量b,求f(x)的单调减区间向量a=(2cosx,sinx),向量b={cos(x-π/3),√3cosx-sinx},设函数f(x)=向量a·向量b,求f(x)的单调递减区间,要详细过
已知向量a=〔√3cosx–√3,sinx〕,向量b=〔1+cosx,cosx〕,设f(x)=向量a×向量b.(1)求f(25π/6)的值.(2...已知向量a=〔√3cosx–√3,sinx〕,向量b=〔1+cosx,cosx〕,设f(x)=向量a×向量b.(1)求f(25π/6)的值.(2)当x?[-π/3,π
设向量a=(cosx,sinx),向量b=(cosy,siny),若|√2 a+b|=√3 |a-√2 b|,则cos(x-y)=----------
设向量a=(cosx,sinx),向量b=(cosy,siny),若|√2 a+b|=√3 |a-√2 b|,则cos(x-y)
已知向量m=(2√3sinx,2cosx),向量n=(cosx,cosx),设函数f(x)=向量m·向量n.已知向量m=(2√3sinx,2cosx),向量n=(cosx,cosx),设函数f(x)=向量m·向量n.(1)求f(x)的最小正周期及值域.(2)在△ABC中,角A,B
设向量A=(1,0),向量B=(sinx,cosx),0
若向量a=(sinx,m),向量b=(sinx+√3cosx,1)设f(x)=向量a×向量b.(1)写出若向量a=(sinx,m),向量b=(sinx+√3cosx,1)设f(x)=向量a×向量b.(1)写出函数f(x)的解析式,并指出它的最小正周期 (2)若x∈[0,π/3],f(x)的最小
已知向量a=(根号3cosx,cosx),b=(0,sinx),c=(sinx,cosx),d=(sinx,sinx)当x属于[0,已知向量a=(根号3cosx,cosx),b=(0,sinx),c=(sinx,cosx),d=(sinx,sinx) (1)当x属于[0,派/2]时,求向量c乘向量d的最大值.(2)设函数f(x)=(向量a
平面向量&三角函数设函数f(x)=a*(b+c),其中向量a=(sinx,-cosx),b=(sinx,-3cosx),c=(-cosx,sinx),x∈R,求函数f(x)的值域.
设函数f(x)=向量a×(向量b+向量c),其中向量a=(sinx)设函数f(x)=向量a*(向量b+向量c),其中向量a=(sinx,-cosx),向量b=(sinx,-3cosx),向量c=(-cosx,sinx),x∈R将函数y=f(x)的图像按向量d平移,使平移后得到的图