定积分 ∫xe^(-x)dx 区间0到1 怎么做的,求过程

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 18:14:20

定积分 ∫xe^(-x)dx 区间0到1 怎么做的,求过程
定积分 ∫xe^(-x)dx 区间0到1 怎么做的,求过程

定积分 ∫xe^(-x)dx 区间0到1 怎么做的,求过程
∫(0→1) xe^(- x) dx
= - ∫(0→1) x d[e^(- x)]
= - [xe^(- x)] + ∫(0→1) e^(- x) dx
= - 1/e - [e^(- x)]
= - 1/e - (1/e - 1)
= 1 - 2/e

先考虑不定积分 ∫xe^(-x)dx =-∫xd[e^(-x)]
=-xe^(-x)+∫e^(-x)dx
=-xe^(-x)-∫e^(-x)d(-x)
...

全部展开

先考虑不定积分 ∫xe^(-x)dx =-∫xd[e^(-x)]
=-xe^(-x)+∫e^(-x)dx
=-xe^(-x)-∫e^(-x)d(-x)
= -xe^(-x)-e^(-x)+C
所以定积分 ∫xe^(-x)dx 区间0到1
=-xe^(-x)[1-0]-e^(-x)[1-0]
=-1/e-1/e+1
=1-2/e

收起