设数列an的前n项和Sn满足S(n+1)=4an+2,a1=1,(1)若bn=a(n+1)-2an,求bn表达式(2)若cn=1/(a(n+1)-an),求数列cn所有项的和.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:33:05

设数列an的前n项和Sn满足S(n+1)=4an+2,a1=1,(1)若bn=a(n+1)-2an,求bn表达式(2)若cn=1/(a(n+1)-an),求数列cn所有项的和.
设数列an的前n项和Sn满足S(n+1)=4an+2,a1=1,(1)若bn=a(n+1)-2an,求bn表达式
(2)若cn=1/(a(n+1)-an),求数列cn所有项的和.

设数列an的前n项和Sn满足S(n+1)=4an+2,a1=1,(1)若bn=a(n+1)-2an,求bn表达式(2)若cn=1/(a(n+1)-an),求数列cn所有项的和.
(1)a[2]=5
s[n+2]-s[n+1]得
a[n+2]=4a[n+1]-4a[n]
a[n+2]-2a[n+1]=2a[n+1]-4a[n]
b[n+1]=2b[n]
b[1]=3
b[n]=3^2(n-1)
(2)设d[n]=a[n]/2^n
d[n+1]-d[n]=3/4
d[1]=1/2
d[n]=-1/4+3/4n
a[n]=(-1/4+3/4n)2^n
c[n]=1/(2^n(5/4+3/4n))
s[n]为c[n]的和
用错位相消法可解得s[n]

已知数列{an}的前n项和满足a1=1/2,an=-Sn*S(n-1),(n大于或等于2),求an,Sn 设正数数列(an)的前n项和Sn满足Sn=1/4(an+1)^2 求 数列(an)的通项公式 设数列{an}的前n项和为Sn,且满足Sn-Sn-1+2SnSn-1=0(n≥2)设数列{an}的前n项和为Sn,且满足Sn-S(n-1)+2SnS(n-1)=0(n≥2),a1=1/2.1 求证,数列{1/Sn}是等差数列 2 求an的通项公式 若等差数列{an}的前n项和为Sn,且满足Sn/S2n为常数,则称该数列为S数列 若首项为a1的各项为正数的等差数列{an}是S数列,设n+h=2008,(n,h为正数) 求1/Sn+1/Sh的最小值 Sn、Sh分别是数列的前n项和和 数列(an),a1=1,当n≥2,其前n项和Sn满足Sn^2=an(Sn-1)证(1/Sn)是等差数列.设bn=log以2为底Sn/S(n+2),bn的前n项和Tn,求满足Tn≥6的最小正整数n 数列{an}满足a(n+1)+an=4n-3,若{an}是等差数列,(1)求{an}的通项公式(2)设Sn是{an}的前n项和,数列{an}满足a(n+1)+an=4n-3,若{an}是等差数列,(1)求{an}的通项公式(2)设Sn是{an}的前n项和,且a1=1,求S(2n+1) 设Sn是数列{an}的前n项和,a1=a,且Sn^2=3n^2an+S(n-1)^2,证明数列{a(n+2)-an}是常数数列设Sn是数列{an}的前n项和,a1=a,且Sn^2=3n^2an+S(n-1)^2,an≠0,n=2,3,4……证明数列{a(n+2)-an}(n≥2)是常数数列 已知以1为首项数列{an}满足: an +1(n为奇数) an+1={an/2(n为偶数)}设数列{an}前n项和为sn,求数列{sn}前n项和Tn 已知数列{An}的前n项和Sn满足S(n+1)=4An+2(n是正整数),A1=1.设Cn=An/2n,求证:{Cn}是等差数列. 已知数列{an},其前n项和Sn满足S(n+1)=2λSn+1 a1=1 a3=4 试比较Tn/2与Sn大小已知数列{an},其前n项和Sn满足S(n+1)=2λSn+1(λ是大于0的常数) 且a1=1 a3=4 (1)求λ的值(2)求数列{an}通向公式an(3)设数列{nan} 数列{an},中,a1=1/3,设Sn为数列{an}的前n项和,Sn=n(2n-1)an 求Sn 高一数学数列的题目(在线等答案)设等差数列{an}的前n项和为Sn,且a1=2,a3=6,设数列{1/Sn}的前n项和是Tn,求T2013的值(已求出 an=2n,Sn=n^2+n)设数列{an}的前n项和为Sn,an与Sn满足an+Sn=2,令bn=Sn+mS(n+1), 1:在数列{an}中,a1=1,当n>=2时,其前n项和sn满足an+2sn*s(n-1)=0(1) 求sn表达式(2)设 bn=sn/2n+1,求数列{bn}的前n项和2:已知数列{an}的通向公式为an=(n-√70)/(n-√71),求数列的最大项和最小项 已知数列{an}的前n项和Sn满足log2(Sn+1)=n,则an=? 已知数列an中,a1=2,an+1=4an-3n+1,求证数列{an-n}为等比数列设{an}的前n项和Sn,求S(n-1)-4Sn的最大值 设数列的{an}前n项和为Sn 且满足2a(n)= 3Sn-5/2S(n-1)-2(n>=2) a(1)=2.(1) 求数列{an}的通项公式(2)证明:1/2(log(2)Sn+log(2)S(n+2))<log(2)S(n+1) 设{an}是正项数列,其前n项和Sn满足4Sn=(an-1)(an+3) ,则数列{an}的通项公式= __ 设数列an的首项a1=1,前n项和Sn=满足关系式tSn-(t+1)S(n-1)=t (t大于0,n属于N* n大于等于2) 求证:数列an是等比数列