sin(n*π/2)*sin(n*π/3)*sin(n*π/4)*...*sin(n*π/n-1) 求化简成一个关于n的表达式,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 19:22:48
sin(n*π/2)*sin(n*π/3)*sin(n*π/4)*...*sin(n*π/n-1) 求化简成一个关于n的表达式,
sin(n*π/2)*sin(n*π/3)*sin(n*π/4)*...*sin(n*π/n-1) 求化简成一个关于n的表达式,
sin(n*π/2)*sin(n*π/3)*sin(n*π/4)*...*sin(n*π/n-1) 求化简成一个关于n的表达式,
真没有公式,只能说n是合数时其值为0,n是素数是非0,但没法看出规律
n较大时数值非常接近0
sin(n*π/2)*sin(n*π/3)*sin(n*π/4)*...*sin(n*π/n-1) 求化简成一个关于n的表达式,
令n趋近于无穷大,且n存在,求sin(π/n)+sin(2π/n)+sin(3π/n)+...+sin(π)=?.
lim(n→∞) (1/n)[sin(π/n)+sin(2π/n)+…+sin(nπ/n)]=?
当n趋于无穷时,求[sin(π/n)/(n+1)+sin(2π/n)/(n+1/2)+.sinπ/(n+1/n)]的极限
sin(π/n)的收敛性
求Lim (2sin^n x+3cos^n x)∕(sin^n x+cos^n x) ,0≤x≤π/2n趋于无穷大
化简sin(nπ+2π/3)×cos(nπ+4π/3) n属于Z
判别级数∑(n=1,∝) 2^n sin(π/3^n) 的敛散性
sin(nπ+π/2n)条件收敛
级数(1/n) × sin(πn/2)的敛散性
级数(1/n) × sin(πn/2)的敛散性
求∑sin(n^2+1)π/n条件收敛
an=sin(nπ/2),n→无限,极限.
化简sin×[a+(2n+1)π]+2sin×[a-(2n+1)π]/sin(a-2nπ)coS(2nπ-a) (n属于Z)
化简sin(a+nπ)+sin(a+nπ)/sin(a+nπ)cos(a-nπ)(n∈z)
{sin(θ+nπ)+sin(θ-nπ)}/sin(nπ+θ)cos(θ-nπ) n∈Z 化简
lim[sinπ/(√n^2+1)+sinπ/(√n^2+2)+...+sinπ/√n^2+n),n—>无穷
证明sin(pi/n)*sin(2pi/n)*sin(3pi/n)*…sin((n-1)pi/n)=n/(2^(n-1))