)已知AB是⊙O的直径,半径OC⊥AB,D为弧AC上任意一点,E为弦BD上一点,且BE = AD)已知AB是⊙O的直径,半径OC⊥AB,D为弧AC上任意一点,E为弦BD上一点,且BE = AD,求证:ΔCDE为等腰直角三角形.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 22:05:01
)已知AB是⊙O的直径,半径OC⊥AB,D为弧AC上任意一点,E为弦BD上一点,且BE = AD)已知AB是⊙O的直径,半径OC⊥AB,D为弧AC上任意一点,E为弦BD上一点,且BE = AD,求证:ΔCDE为等腰直角三角形.
)已知AB是⊙O的直径,半径OC⊥AB,D为弧AC上任意一点,E为弦BD上一点,且BE = AD
)已知AB是⊙O的直径,半径OC⊥AB,D为弧AC上任意一点,E为弦BD上一点,且BE = AD,求证:ΔCDE为等腰直角三角形.
)已知AB是⊙O的直径,半径OC⊥AB,D为弧AC上任意一点,E为弦BD上一点,且BE = AD)已知AB是⊙O的直径,半径OC⊥AB,D为弧AC上任意一点,E为弦BD上一点,且BE = AD,求证:ΔCDE为等腰直角三角形.
证明:连接CA,CB
∵OC⊥AB
∴CA=CB
∵AD=BE,∠CAD=∠CBE(同弧所对的圆周角相等)
∴△ACD≌△BCE
∴CD=CE,∠ACD=∠BCE
∵AB是直径
∴∠ACB=90°
∵∠BCE+∠ACE=90°
∴∠ACD+∠ACE=90°
∴∠DCE=90°
∴△CDE是等腰直角三角形
考点:圆周角定理;全等三角形的判定与性质.
专题:证明题.
分析:连接AC、BC,证△ACD≌△BCE和∠BCE=∠ADB=90°即可.
连接AC、BC,
由圆周角定理得∠CBE=∠CAD,
∵CO⊥AB,
∴点C是弧ABC的中点,
∴AC=BC,
又∵BE=AD
∴△ACD≌△BCE,
∴CD=CE.∠ADC=∠BE...
全部展开
考点:圆周角定理;全等三角形的判定与性质.
专题:证明题.
分析:连接AC、BC,证△ACD≌△BCE和∠BCE=∠ADB=90°即可.
连接AC、BC,
由圆周角定理得∠CBE=∠CAD,
∵CO⊥AB,
∴点C是弧ABC的中点,
∴AC=BC,
又∵BE=AD
∴△ACD≌△BCE,
∴CD=CE.∠ADC=∠BEC,
∵AB是直径,
∴∠ADB=90°,
∵∠BEC=∠DCE+∠CDB,∠ADC=∠ADB+∠CDB,
∴∠DCE=∠ADB=90°,
即△DCE是等腰直角三角形.
收起
嚷嚷