(1)求数列1,1/1+2 ,1/1+2+3 ……1/1+2+3+n的通项公式Αn (2)求数列{(1)求数列1,1/1+2 ,1/1+2+3 ……1/1+2+3+n的通项公式Αn(2)求数列{An}和前n项和Sn
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:37:14
(1)求数列1,1/1+2 ,1/1+2+3 ……1/1+2+3+n的通项公式Αn (2)求数列{(1)求数列1,1/1+2 ,1/1+2+3 ……1/1+2+3+n的通项公式Αn(2)求数列{An}和前n项和Sn
(1)求数列1,1/1+2 ,1/1+2+3 ……1/1+2+3+n的通项公式Αn (2)求数列{
(1)求数列1,1/1+2 ,1/1+2+3 ……1/1+2+3+n的通项公式Αn
(2)求数列{An}和前n项和Sn
(1)求数列1,1/1+2 ,1/1+2+3 ……1/1+2+3+n的通项公式Αn (2)求数列{(1)求数列1,1/1+2 ,1/1+2+3 ……1/1+2+3+n的通项公式Αn(2)求数列{An}和前n项和Sn
(1)An =2/[n(n+1)]
分母是前n个正整数的和,是0.5n(n+1)
(2)Sn=1+1/3+1/6+……+2/[n(n+1)]
=2{1/2+1/6+1/12+……+1/[n(n+1)]}
=2{1/(1×2)+1/(2×3)+1/(3×4)+……+1/[n(n+1)]}
=2{(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+[1...
全部展开
(1)An =2/[n(n+1)]
分母是前n个正整数的和,是0.5n(n+1)
(2)Sn=1+1/3+1/6+……+2/[n(n+1)]
=2{1/2+1/6+1/12+……+1/[n(n+1)]}
=2{1/(1×2)+1/(2×3)+1/(3×4)+……+1/[n(n+1)]}
=2{(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+[1/n-1/(n+1)]}
=2[1-1/2+1/2-1/3+1/3-1/4+……+1/n-1/(n+1)]
=2[1-1/(n+1)]
=2n/(n+1)
收起
1.
An=2/[n*(n+1)]
2.
Sn=2*[1/(1×2)+1/(2×3)+...+1/n*(n+1)]
=2*[1-1/2+1/2-1/3+...+1/n-1/(n+1)]
=2*[1-1/(n+1)]
=2n/(n+1)