过点M(-2,0)作直线L与抛物线y=1/4x^2交于A,B两点,若以OA,OB为两边作平行四边形OAPB过点M(-2,0)作直线L与抛物线y=1/4x^2交于A,B两点,O为坐标原点,若以OA,OB为两边作平行四边形OAPB,求第四个顶点P的

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:26:24

过点M(-2,0)作直线L与抛物线y=1/4x^2交于A,B两点,若以OA,OB为两边作平行四边形OAPB过点M(-2,0)作直线L与抛物线y=1/4x^2交于A,B两点,O为坐标原点,若以OA,OB为两边作平行四边形OAPB,求第四个顶点P的
过点M(-2,0)作直线L与抛物线y=1/4x^2交于A,B两点,若以OA,OB为两边作平行四边形OAPB
过点M(-2,0)作直线L与抛物线y=1/4x^2交于A,B两点,O为坐标原点,若以OA,OB为两边作平行四边形OAPB,求第四个顶点P的轨迹方程.

过点M(-2,0)作直线L与抛物线y=1/4x^2交于A,B两点,若以OA,OB为两边作平行四边形OAPB过点M(-2,0)作直线L与抛物线y=1/4x^2交于A,B两点,O为坐标原点,若以OA,OB为两边作平行四边形OAPB,求第四个顶点P的
见图

已知抛物线y^2=4x,过点M(-1,0)作一条直线l与抛物线相交于不同的两点A,B,点A关于x轴对称点为C,求证直线BC过定点 过点M(2,0)作斜率为1的直线L,交抛物线y^2=4X于A.B两点,求|AB| 过点M(-2,0)作直线L与抛物线y=1/4x^2交于A,B两点,若以OA,OB为两边作平行四边形OAPB过点M(-2,0)作直线L与抛物线y=1/4x^2交于A,B两点,O为坐标原点,若以OA,OB为两边作平行四边形OAPB,求第四个顶点P的 已知抛物线C1:x^2=y,圆C2:x^2+(y-4)^2的圆心为点M.已知点P是抛物线C1上的一点(异于原点),过点P作圆C2的两条切线,交抛物线C1与A.B两点,若过M.P两点的直线L垂直与AB,求直线L的方程? 设过抛物线x^2=2py (p>0) 对称轴上的定点F(0,m) (m>0)作直线AB与抛物线交于A,B两点,且A(x1,y1),B(x2,y2)(x10),相应于点F的直线l:y=-m称为抛物线的“类准线” (1) 若x1x2=-4m,求抛物线方程 (2)过点A(x1,y1 1、过点M(-2,4)作直线l与抛物线y^2=8x只有一个公共点,求直线l的方程最好有详细过程和图说明 过点M (2,0)作斜率为1的直线l,交抛物线y^2=4x于A,B两点,求|AB| 求详解, 过点(1,0)作倾斜角4分之π的直线,与抛物线y²=2x交于M.N两点,则|MN|= 过原点的直线l与抛物线y=ax^2+1相交于A(-4,5),B两点,点A关于y轴的对称点为C.(1)求直线BC的解析式(2)过原点任作一条与直线l不同的直线m,交抛物线y=ax^2+1于D,E两点,点D关于y轴的对称点为F,则直 过原点的直线l与抛物线y=ax^2+1相交于A(-4,5),B两点,点A关于y轴的对称点为C.(1)求直线BC的解析式(2)过原点任作一条与直线l不同的直线m,交抛物线y=ax^2+1于D,E两点,点D关于y轴的对称点为F,则直 一道解析几何问题已知抛物线y^2=2px(p>0)(1)过抛物线的焦点为2的直线l交抛物线于A,B两点,若|AB|=2,求p的值;(2)过点M(2p,0)作任何直线l交抛物线于P,Q两点,求证:OP⊥OQ. 已知抛物线C y2=2px(p>0)的准线为L,焦点为F 圆M的圆心在X轴的正半轴上且与y轴相切过原点o作倾斜角为π/3的直线交L于点A,交圆M于另一点B,且AO=OB=2(1)求圆m和抛物线的方程(2)过圆心M的直线交抛 已知抛物线C:X²=4Y,若过M(-1,0)的直线L与抛物线C交与E,F两点,又过E,F作抛物线的切线L₁,L₂当L₁⊥L₂时,求直线L的方程 已知抛物线y^2=-4x的焦点为F,其准线与x轴交于点M,过M作斜率为k的直线l交抛物线于AB两点,弦AB的中点为P,AB的垂直平分线与x轴交于点E(x0,0) (1)求k的取值范围;(2)求证:x0 抛物线x²+2y=1与过点M(0,-1)的直线l相交于A,B两点,O为坐标原点若直线OA和OB斜率和为1,求直线L方程 一直抛物线C:y^2=4x 点M(1,0)过M的直线l与C相交于A B两点 直线l的斜率为1 求以AB为直径的圆的方程 已知顶点在原点O,准线方程是y=-1的抛物线与过点M(0,1)的直线l交于A,B两点,若直线OA,OB的斜率之和为1 (1 )求抛物线方程(2)求直线l方程 (3)求直线l与抛物线相交弦AB的弦长 问一道有关抛物线的高中数学题设过抛物线x^2=2py (p>0) 对称轴上的定点F(0,m) (m>0)作直线AB与抛物线交于A,B两点,且A(x1,y1),B(x2,y2)(x10),相应于点F的直线l:y=-m称为抛物线的“类准线”(1) 若x1x2=-4