设函数f(X)的定义域R+,对任意正实数mn恒有f(mn)=f(m)+f(n).当x>1时f(x)>0f(2)=1 求证f(x)在R+上是增函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:01:42

设函数f(X)的定义域R+,对任意正实数mn恒有f(mn)=f(m)+f(n).当x>1时f(x)>0f(2)=1 求证f(x)在R+上是增函数
设函数f(X)的定义域R+,对任意正实数mn恒有f(mn)=f(m)+f(n).当x>1时f(x)>0f(2)=1 求证f(x)在R+上是增函数

设函数f(X)的定义域R+,对任意正实数mn恒有f(mn)=f(m)+f(n).当x>1时f(x)>0f(2)=1 求证f(x)在R+上是增函数
令n=1 得f(m)=f(m)+f(1) 得f(1)=0
令n=1/m 得f(1)=f(m)+f(1/m)=0 即-f(m)=f(1/m)
设m>n f(m)-f(n)=f(m)+f(1/n)=f(m/n) 因为m>n 所以m/n>1
所以f(m/n)>0
f(2)=1这个条件用不上啊

设函数f(X)的定义域R+,对任意正实数mn恒有f(mn)=f(m)+f(n).当x>1时f(x)>0f(2)=1 求证f(x)在R+上是增函数 有关函数的一道证明题设函数y=f(x)的定义域为R,当x>0时,f(x)>1,且对任意实数a,b∈R,有f(a+b)=f(a)f(b)恒成立1.证明f(x)恒为正2.证明f(x)为增函数 设函数f(X)的定义域为R+,且有:1.f(1/2)=1,2.对任意正实数x,y都有f(X*y)=f(x)+f(Y),3.f(x)为减函数(1)求证:当x∈[1,正无穷)时,f(X)≤0(2)求证:当x,y属于R+,都有f(x/y)=f(X)-f(Y)(3)解不等式:f(-x)+f(3-x)≥-2 设函数f(x)的定义域为R,对任意实数x,y满足f(a+b)=f(a)*f(b),设当x1,解不等式f(x+5)>1/f(x) 函数的性质及应用设f(x)是定义域为正实数上的增函数,对任意x>0,y>0,f(xy)=f(x)+f(y)总成立.求证:x>1时,f(x)>0 如果函数f(x)的定义域为R,对任意实数a、b满足f(θ+b)f(x)的定义域为R,对任意实数a、b满足f(θ+b)=f(θ)·f(b).设当x<0时,f(x)>1,试解不等式f(x+5)>1/f(x)说明理由. 设函数f(x)的定义域为(0,+无穷大),对任意正实数x,y均有f(xy)=f(x)+f(y),且x>1时,f(x)>0,判断f(x)的单调? 设函数f(x)的定义域为R,当x1且对任意实数x,y有f(x+y)=f(x)f(y)求f(0)判断并证明f(x)的单调性 设定义域为R的函数f(x),对任意实数X,Y满足f(x+Y)=f(x)*f(y),且f(0)≠0求证f(x)>0 设函数f=(x)的定义域为(0.+∞),且对任意的正实数x,y,f(xy)=f(x)+f(y)恒成立,且当x>1,f(x) 1.f(x)是定义域为R的增函数,且值域为0到正无限,则下列函数中为减函数的是A.f(X)+f(-x) B.f(x)-f(-x) C.f(x)乘f(-x) D.f(X)除以f(-x)2.设函数ax2+bx+c(ax的二次方加bx加c)(a不等于0)对任意实数都有f(2+t)=f(2-t) 设函数的定义域为(0,+∞),且对任意的正实数x,y,有f(xy)=f(x)+f(y)恒成立,已知f设函数的定义域为(0,+∞),当x>1,f(x)<0,且对任意的正实数x,y,有f(xy)=f(x)+f(y)恒成立,f(2)=1,解不等式f(x)+f(x-2 设函数f(x)的定义域为R,对于任意实数x,y,总有f(x+y)=f(x)*f(y),当X>0,0 抽象函数的基础题两道1. 函数f(x)的定义域为(0,正无穷大),对任意正实数x,y都有f(xy)=f(x)+f(y)且f(4)=2,则f(根号2)=?2.设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),第一小 设函数f(X)的定义域为D ,如果存在正实数K,使对任意x属于D,都有x+k属于D,且f(x+k)>f(x)恒成立,则称函数f(x)为D上的“k阶增函数”.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)==|x-a|-a,其中a为正常数. 设函数f(x)的定义域在正实数集上,若对任意x1>0,x2>0均有f(x1+x2)=f(x1)+f(x2)且f(8)=3,求f(2). 如果函数f(x)的定义域为R,对任意实数a b满足f(a+b)=f(a)*f(b),设f(1)=k 求f(10) 设函数f(x)的定义域是(0,+∞),对任意正实数m,n恒有f(m/n)=f(m)-f(n),且当x>1时,f(x)1额...抄错题了!对任意正实数m,n恒有f(m/n)=f(m)-f(n),这句应该是 对任意正实数m,n恒有f(mn)=f(m)+f(n)