已知实数a,b,x,y,满足不等式(a+b)(x+y)>2(ay+bx),求证(x-y)/(a-b)+(a-b)/(x-y)>=2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:51:23

已知实数a,b,x,y,满足不等式(a+b)(x+y)>2(ay+bx),求证(x-y)/(a-b)+(a-b)/(x-y)>=2
已知实数a,b,x,y,满足不等式(a+b)(x+y)>2(ay+bx),求证(x-y)/(a-b)+(a-b)/(x-y)>=2

已知实数a,b,x,y,满足不等式(a+b)(x+y)>2(ay+bx),求证(x-y)/(a-b)+(a-b)/(x-y)>=2
∵ ax+ay+bx+by>2ay+2bx
∴ ax-ay-bx+by>0
∴ a(x-y)-b(x-y)>0
∴ (a-b)(x-y)>0
∴ a-b和x-y同号,设a-b=n,x-y=m,则转化为已知 mn>0,证明:m/n+n/m≥2
① m>0 n>0 则m/n+n/m≥2根号(m/n×n/m)=2
② m<0 n<0 则m/n>0且n/m>0,∴m/n+n/m≥2根号[(m/n)×(n/m)]=2
综合① ② 所以(x-y)/(a-b)+(a-b)/(x-y)>=2

这说明(x-y)(a-b)>0,所以(x-y)/(a-b)>0,(a-b)/(x-y)>0,然后用基础不等式,显然成立,这是因为(x-y)/(a-b)*(a-b)/(x-y)=1