已知f(x)=asinx+bcosx,定积分(0到π/2)f(x)dx=4,定积分(0到π/6)f(x)dx=(7-3根号3已知f(x)=asinx+bcosx,定积分(0到π/2)f(x)dx=4,定积分(0到π/6)f(x)dx=(7-3根号3)/2,求f(x)的最值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 11:34:40
已知f(x)=asinx+bcosx,定积分(0到π/2)f(x)dx=4,定积分(0到π/6)f(x)dx=(7-3根号3已知f(x)=asinx+bcosx,定积分(0到π/2)f(x)dx=4,定积分(0到π/6)f(x)dx=(7-3根号3)/2,求f(x)的最值
已知f(x)=asinx+bcosx,定积分(0到π/2)f(x)dx=4,定积分(0到π/6)f(x)dx=(7-3根号3
已知f(x)=asinx+bcosx,定积分(0到π/2)f(x)dx=4,定积分(0到π/6)f(x)dx=(7-3根号3)/2,求f(x)的最值
已知f(x)=asinx+bcosx,定积分(0到π/2)f(x)dx=4,定积分(0到π/6)f(x)dx=(7-3根号3已知f(x)=asinx+bcosx,定积分(0到π/2)f(x)dx=4,定积分(0到π/6)f(x)dx=(7-3根号3)/2,求f(x)的最值
f(x) = asinx + bcosx
∫(0→π/2) f(x) dx = 4
(- acosx + bsinx)|(0→π/2) = 4
b + a = 4
∫(0→π/6) f(x) dx = (7 - 3√3)/2
(- acosx + bsinx)|(0→π/6) = (7 - 3√3)/2
- a * √3/2 + b * 1/2 + ...
全部展开
f(x) = asinx + bcosx
∫(0→π/2) f(x) dx = 4
(- acosx + bsinx)|(0→π/2) = 4
b + a = 4
∫(0→π/6) f(x) dx = (7 - 3√3)/2
(- acosx + bsinx)|(0→π/6) = (7 - 3√3)/2
- a * √3/2 + b * 1/2 + a = (7 - 3√3)/2
(2 - √3)a + b = 7 - 3√3
解方程得a = 3,b = 1
f(x)最大值 = √(3² + 1) = √10
f(x)最小值 = - √10
收起