高数曲面积分:计算∫(x+y)e^(x^2+y^2)ds 其中L为圆弧y=√(a^2-x^)和直线y=x与y=-x围成的扇形边界

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 21:53:51

高数曲面积分:计算∫(x+y)e^(x^2+y^2)ds 其中L为圆弧y=√(a^2-x^)和直线y=x与y=-x围成的扇形边界
高数曲面积分:计算∫(x+y)e^(x^2+y^2)ds 其中L为圆弧y=√(a^2-x^)和直线y=x与y=-x围成的扇形边界

高数曲面积分:计算∫(x+y)e^(x^2+y^2)ds 其中L为圆弧y=√(a^2-x^)和直线y=x与y=-x围成的扇形边界
L由y = √(a² - x²) 和 y = x 和 y = - x围成
参数化:t:- π/4 → π/4
x = acost,y = asint
dx = - asintdt,dy = acostdt
ds = adt
∫L (x + y)e^(x² + y²) ds
= ∫(- π/4,π/4) (acost + asint)e^a² adt
= a²e^a²∫(- π/4,π/4) (sint + cost) dt
= a²e^a² * 2[sint] |(0,π/4)
= √2a²e^a²