利用级数的性质和收敛的必要条件判别下列级数的收敛性,只把第一小题做了就好啦,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:27:10

利用级数的性质和收敛的必要条件判别下列级数的收敛性,只把第一小题做了就好啦,
利用级数的性质和收敛的必要条件判别下列级数的收敛性,只把第一小题做了就好啦,

利用级数的性质和收敛的必要条件判别下列级数的收敛性,只把第一小题做了就好啦,
这是刚学级数吗?
首先通项1/2^n-1/3^n > 0,是正项级数.
由1/2^n-1/3^n < 1/2^n,而等比级数∑{1 ≤ n} 1/2^n = 1.
可知∑{1 ≤ n} (1/2^n-1/3^n) < 1,故级数收敛.
如果学了比较判别法,可以直接由∑{1 ≤ n} 1/2^n收敛证明原级数收敛.
另外其实可以直接用等比数列求和得到∑{1 ≤ n ≤ m} (1/2^n-1/3^n) = 1-1/2^m-(1-1/3^m)/2.
并求得m趋于无穷时的极限为1/2.