从空间一点P发出三条射线PA、PB、PC,在PA、PB、PC上分别取向量PQ=a ,向量PR=b ,向量PS=c,点G在PQ上,且PG=2GQ,H为RS的中点,则 向量GH等于?1/2(b+c)-2/3a,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:30:21

从空间一点P发出三条射线PA、PB、PC,在PA、PB、PC上分别取向量PQ=a ,向量PR=b ,向量PS=c,点G在PQ上,且PG=2GQ,H为RS的中点,则 向量GH等于?1/2(b+c)-2/3a,
从空间一点P发出三条射线PA、PB、PC,在PA、PB、PC上分别取向量PQ=a ,向量PR=b ,向量PS=c,点G在PQ上,且PG=2GQ,H为RS的中点,则 向量GH等于?
1/2(b+c)-2/3a,

从空间一点P发出三条射线PA、PB、PC,在PA、PB、PC上分别取向量PQ=a ,向量PR=b ,向量PS=c,点G在PQ上,且PG=2GQ,H为RS的中点,则 向量GH等于?1/2(b+c)-2/3a,
PG=2GQ,所以PQ=PG+GQ=3/2 PG,所以PG=2a/3
RS=PS-PR=c-b,H是RS中点,所以RH=1/2 RS=(c-b)/2
所以,GH=GP+PR+PH=-2a/3+b+(c-b)/2=-2a/3+b/2+c/2

从空间一点P发出三条射线PA、PB、PC,在PA、PB、PC上分别取向量PQ=a ,向量PR=b ,向量PS=c,点G在PQ上,且PG=2GQ,H为RS的中点,则 向量GH等于?1/2(b+c)-2/3a, 立体几何问题:从空间中一点p出发的三条射线pa,pb,pc,若∠apb=∠apc=60°.从空间中一点p出发的三条射线pa,pb,pc,若∠apb=∠apc=60°,∠bpc=arccos四分之一,求证:平面pab垂直于平面pac 从一点P引出三条射线PA、PB、PC,且两两呈60度角,则直线PC与平面PAB所成角的余弦值是多少? 从一点P引出三条射线PA、PB、PC,且两两呈60度角,则二面角A-PB-C的余弦值是多少?请说明理由, 已知PA、PB、PC是从P点发出的三条射线,每两条射线间的夹角都是60度,求PC与平面PAB所成角的余弦值 已知从一点P引出三条射线PA,PB,PC,且两两成60°角,G为射线PA上一点,若PG=1,则点G到平面PBC的距离为 已知从一点P引出三条射线PA,PB,PC,且两两成60°角,G为射线PA上一点,若PG=1,则点G到平面PBC的距离为 问一道高二空间向量题PA PB PC是从p引出的三条射线,若每两条夹角都是60°,则二面角B-PA-C的余弦值? 从空间中一点P引三条射线PA,PB,PC,且三条射线两两成60°角,则二面角A-PB-C的平面角的余弦值是A.1/3 B.2/3 C.-1/3 D.-2/3 PA,PB,PC是从P引出的三条射线,每两条夹角都是30°,则PC与平面PAB夹角的余弦值为 PA、PB、PC是从P点出发的三条射线,每两条射线的夹角均为60°,那么直线PC与平面PAB所成的角的余弦值是? 已知PA、PB、PC从点P引出的三条射线,每两条射线的夹角都是60°,求直线PC与平面PAB所成的角为?xiexie~ PA,PB,PC是从点P引出的三条射线,每两条射线夹角均为60度,直线PC与平面APB所成角的余弦值是 空间三条射线PA ,PB ,PC ,角APC=角APB=60度,角BPC=90度,求二面角B-PA-C的余弦值 线面角怎么求PA,PB,PC是从P出发的三条射线,每两条的夹角为60度,则直线PC与平面APB所成角的余弦值为. PA,PB,PC是从P引出的三条射线,每两条夹角都是60度那么直线PC与平面PAB所成角的余弦值是? PA、PB、PC是从P点引出的三条射线,每两条的夹角 都是60o,则二面角B –PA—C的余弦值是 ( ) 设PA,PB,PC是从点P引出的三条射线,每两条的夹角都等于60度,则直线PC与平面APB所成角的余弦值是( )设PA,PB,PC是从点P引出的三条射线,每两条的夹角都等于60度,则直线PC与平面APB所成角的余弦值