如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 17:31:27
如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的
如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌
底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:3,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:2≈1.414,3≈1.732)
如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的
过B作BG⊥CE于G,过B作BH⊥AE交EA的延长线于H
由i=tan∠BAH=1:根号3,得:∠BAH=30°,从而EG=BH=1/2AB=5米
由勾股定理得:AH=5根号3
所以BG=HE=15+5根号3
因为∠CBG=45°
所以BG=CG=15+5根号3
所以CE=15+5根号3+5=20+5根号3
在Rt△DAE中,tan60°=DE/AE
所以DE=10根号3
所以CD=CE-DE=20-5根号3
过B分别作AE、DE的垂线,设垂足为F、G.分别在Rt△ABF和Rt△ADE中,通过解直角三角形求出BF、AF、DE的长,进而可求出EF即BG的长;在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长;根据CD=CG+GE-DE即可求出宣传牌的高度.答案为约等于2.7m
过B作垂线BF⊥AE,交EA于F,过B作BG⊥DE
Rt△ABF中,AB=10,i=tan∠BAF=1/根号3 =根号3/3
∴∠BAF=30°,BF=5,AF=5根号3.
∴BG=AF+AE=5 根号3+15.
Rt△BGC中,∠CBG=45°,
∴CG=BG=5根号3+15.
Rt△ADE中,∠DAE=60°,AE=15,
∴DE=根号3...
全部展开
过B作垂线BF⊥AE,交EA于F,过B作BG⊥DE
Rt△ABF中,AB=10,i=tan∠BAF=1/根号3 =根号3/3
∴∠BAF=30°,BF=5,AF=5根号3.
∴BG=AF+AE=5 根号3+15.
Rt△BGC中,∠CBG=45°,
∴CG=BG=5根号3+15.
Rt△ADE中,∠DAE=60°,AE=15,
∴DE=根号3 AE=15根号3 .
∴CD=CG+GE-DE=5 根号3+15+5-15根号3 =20-10根号3 ≈2.7.
答:宣传牌CD高约2.7米.
收起
我是开发的 如图,某
buhui
过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.
Rt△ABF中,AB=10,i=tan30°
∴∠BAF=30°,BF=5,AF=5.
∴BG=AF+AE=5+15.
Rt△BGC中,∠CBG=45°,
∴CG=BG=5+15.
Rt△ADE中,∠DAE=60°,AE=15,
∴DE=AE=15.
∴CD=CG+GE-DE=...
全部展开
过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.
Rt△ABF中,AB=10,i=tan30°
∴∠BAF=30°,BF=5,AF=5.
∴BG=AF+AE=5+15.
Rt△BGC中,∠CBG=45°,
∴CG=BG=5+15.
Rt△ADE中,∠DAE=60°,AE=15,
∴DE=AE=15.
∴CD=CG+GE-DE=5+15+5-15=20-10≈2.7m.
答:宣传牌CD高约2.7米.
收起
我也有这道题
加油自己做吧!
过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.
Rt△ABF中,AB=10,i=tan∠BAF= = ,
∴∠BAF=30°,BF=5,AF=5 .
∴BG=AF+AE=5 +15.
Rt△BGC中,∠CBG=45°,
∴CG=BG=5 +15.
Rt△ADE中,∠DAE=60°,AE=15,
∴DE= AE=15 .
∴C...
全部展开
过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.
Rt△ABF中,AB=10,i=tan∠BAF= = ,
∴∠BAF=30°,BF=5,AF=5 .
∴BG=AF+AE=5 +15.
Rt△BGC中,∠CBG=45°,
∴CG=BG=5 +15.
Rt△ADE中,∠DAE=60°,AE=15,
∴DE= AE=15 .
∴CD=CG+GE-DE=5 +15+5-15 =20-10 ≈2.7.
答:宣传牌CD高约2.7米.
收起
过B作垂线BF⊥AE,交EA于F,过B作BG⊥DE
Rt△ABF中,AB=10,i=tan∠BAF=1/根号3 =根号3/3
∴∠BAF=30°,BF=5,AF=5根号3.
∴BG=AF+AE=5 根号3+15.
Rt△BGC中,∠CBG=45°,
∴CG=BG=5根号3+15.
Rt△ADE中,∠DAE=60°,AE=15,
∴DE=根号3...
全部展开
过B作垂线BF⊥AE,交EA于F,过B作BG⊥DE
Rt△ABF中,AB=10,i=tan∠BAF=1/根号3 =根号3/3
∴∠BAF=30°,BF=5,AF=5根号3.
∴BG=AF+AE=5 根号3+15.
Rt△BGC中,∠CBG=45°,
∴CG=BG=5根号3+15.
Rt△ADE中,∠DAE=60°,AE=15,
∴DE=根号3 AE=15根号3 .
∴CD=CG+GE-DE=5 根号3+15+5-15根号3 =20-10根号3 ≈2.7.
答:宣传牌CD高约2.7米.
收起
分析:过B分别作AE、DE的垂线,设垂足为F、G.分别在Rt△ABF和Rt△ADE中,通过解直角三角形求出BF、AF、DE的长,进而可求出EF即BG的长;在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长;根据CD=CG+GE-DE即可求出宣传牌的高度.过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.
Rt△ABF中,AB=10,i=tan∠BAF=13=33,<...
全部展开
分析:过B分别作AE、DE的垂线,设垂足为F、G.分别在Rt△ABF和Rt△ADE中,通过解直角三角形求出BF、AF、DE的长,进而可求出EF即BG的长;在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长;根据CD=CG+GE-DE即可求出宣传牌的高度.过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.
Rt△ABF中,AB=10,i=tan∠BAF=13=33,
∴∠BAF=30°,BF=5,AF=53.
∴BG=AF+AE=53+15.
Rt△BGC中,∠CBG=45°,
∴CG=BG=53+15.
Rt△ADE中,∠DAE=60°,AE=15,
∴DE=3AE=153.
∴CD=CG+GE-DE=53+15+5-153=20-103≈2.7m.
答:宣传牌CD高约2.7米.
收起