请数学高手都进来看看,一道看似简单的证明,不过很难证证明:矩形(一般的矩形)的内接菱形的顶点是所在矩形边的中点.若能,请写出证明过程.若不能,请说明理由,并举出反例(除了正方形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:45:45
请数学高手都进来看看,一道看似简单的证明,不过很难证证明:矩形(一般的矩形)的内接菱形的顶点是所在矩形边的中点.若能,请写出证明过程.若不能,请说明理由,并举出反例(除了正方形
请数学高手都进来看看,一道看似简单的证明,不过很难证
证明:矩形(一般的矩形)的内接菱形的顶点是所在矩形边的中点.
若能,请写出证明过程.若不能,请说明理由,并举出反例(除了正方形).
xyhjqka 反例正确,但是不是特殊情况,(像是正方形)是否能用一般形式证明?希望能给出证明
请数学高手都进来看看,一道看似简单的证明,不过很难证证明:矩形(一般的矩形)的内接菱形的顶点是所在矩形边的中点.若能,请写出证明过程.若不能,请说明理由,并举出反例(除了正方形
反例:
矩形(21,3)(-15,15)(-21,-3)(15,-15)
四条边方程:
y=-1/3x+10 y=-1/3x-10 y=3x+6 y=3x-6
内接菱形:(0,10)(20,0)(0,-10)(-20,0)
内接菱形的顶点不是所在矩形边的中点.
不是特殊情况,可以反过来考虑,作菱形的外接矩形,事实上对于菱形的一对顶点在角外作一对平行线可以有很多种做法,任取一对平行线做过另两顶点的垂线,只要形成的矩形可以将菱形包含即可.上面只是举一个整点例子,(矩形和菱形都不是正方形).
分别连接内接菱形的两条对角线
因为菱形的两条对角线互相垂直平分
所以在中点
我想应该是这样的吧,做之前要先画图!!!
第一步:连接两个对角线,三角形两边中点的连线平行且等于底边的一半,说明菱形中点连接起来的四边形具有对边相等切平行的性质;
第二步:菱形对角线具有垂直的特性,因此内部的小四边形相邻两边也是互相垂直的;
因此,小四边形一定是矩形。...
全部展开
第一步:连接两个对角线,三角形两边中点的连线平行且等于底边的一半,说明菱形中点连接起来的四边形具有对边相等切平行的性质;
第二步:菱形对角线具有垂直的特性,因此内部的小四边形相邻两边也是互相垂直的;
因此,小四边形一定是矩形。
收起
有空再证明给你看
这个命题有问题。
所在矩形边的中点连线固然是内接菱形(可以证明4个小直角三角形全等),但一个矩形的内接菱形肯定不止这么一个。
菱形的还有一个判定是对角线互相垂直平分。只要过矩形对角线交点作1 直线,再过交点作这线的垂线。2直线与矩形四边的交点就符合条件。
也许我的概念理解错了。...
全部展开
这个命题有问题。
所在矩形边的中点连线固然是内接菱形(可以证明4个小直角三角形全等),但一个矩形的内接菱形肯定不止这么一个。
菱形的还有一个判定是对角线互相垂直平分。只要过矩形对角线交点作1 直线,再过交点作这线的垂线。2直线与矩形四边的交点就符合条件。
也许我的概念理解错了。
收起
用反证法