已知向量a=(2√3sinx,cosx+sinx),b=(cosx,cosx-sinx)fx=a.b,若fx=1,出函数y=fx的单调区间
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:36:31
已知向量a=(2√3sinx,cosx+sinx),b=(cosx,cosx-sinx)fx=a.b,若fx=1,出函数y=fx的单调区间
已知向量a=(2√3sinx,cosx+sinx),b=(cosx,cosx-sinx)fx=a.b,若fx=1,出函数y=fx的单调区间
已知向量a=(2√3sinx,cosx+sinx),b=(cosx,cosx-sinx)fx=a.b,若fx=1,出函数y=fx的单调区间
已知向量a=(2cosx,√3sinx),向量b=(3cosx,-2cosx),设∫ (x)=向量ab+2
已知向量a=(sinx,cosx),b=(cosx,sinx-2cosx),0
已知向量a=(sinx,cosx),b=(cosx,sinx-2cosx),0
已知向量a=(2cosx,sinx)向量b={cos(x-π/3),√3cosx-sinx}求f(x)的解析式(详细一点)已知向量a=(2cosx,sinx),向量b={cos(x-π/3),√3cosx-sinx},设函数f(x)=向量a·向量b,求f(x)的表达式
已知向量a=(2sinx,cosx)b=(√3cosx,2cosx)定义f(x)=向量a*b-1求对称轴.
已知向量M=(2sinx,cosx-sinx),向量N=(√3COSX,COSX+SINX),f(x)=m*n 求它的最小正周期
一道向量题,已知:向量a=(2cosx,2sinx),向量b=(cosx,√3cosx)函数f(x)=向量a×向量b.(Ⅰ)求函数f(x)的最小正周期和值域
已知向量a=(2sinx,2cosx),b=(cosx,sinx)
已知向量a=(2sinx,cosx)向量b=(根号3cosx,2cosx)定义域f(x)=向量a*b-1
已知向量m=(2sinx,cosx-sinx),n=(根号3cosx,cosx+sinx),F(x)=m.n
已知向量a=〔√3cosx–√3,sinx〕,向量b=〔1+cosx,cosx〕,设f(x)=向量a×向量b.(1)求f(25π/6)的值.(2...已知向量a=〔√3cosx–√3,sinx〕,向量b=〔1+cosx,cosx〕,设f(x)=向量a×向量b.(1)求f(25π/6)的值.(2)当x?[-π/3,π
关于函数和log,已知向量m=(-2sinx,cosx),n=(√3cosx,2cosx),f(x)=loga(m*n-1)(a
已知向量a=(sinx,1),向量b=(1,cosx),向量c=(0,3),-pi/2
已知向量a=(2cosX,cosX),向量b=(cosX,2sinX),记f(x)=a
已知向量a=(根号3cosx,cosx),b=(0,sinx),c=(sinx,cosx),d=(sinx,sinx)当x属于[0,已知向量a=(根号3cosx,cosx),b=(0,sinx),c=(sinx,cosx),d=(sinx,sinx) (1)当x属于[0,派/2]时,求向量c乘向量d的最大值.(2)设函数f(x)=(向量a
已知向量a=(sinx+cosx,sinx-cosx),则向量a的模(长度)等于多?
已知向量a=(2√3sinx,cosx+sinx),b=(cosx,cosx-sinx)fx=a.b,若fx=1,出函数y=fx的单调区间
已知向量m=(2√3sinx,2cosx),向量n=(cosx,cosx),设函数f(x)=向量m·向量n.已知向量m=(2√3sinx,2cosx),向量n=(cosx,cosx),设函数f(x)=向量m·向量n.(1)求f(x)的最小正周期及值域.(2)在△ABC中,角A,B