竞赛数列试题书

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:36:21

竞赛数列试题书
竞赛数列试题

竞赛数列试题书
高一数学同步测试(13)—数列单元测试题
  一、选择题
  1.若Sn是数列{an}的前n项和,且 则 是 ( )
  A.等比数列,但不是等差数列 B.等差数列,但不是等比数列
  C.等差数列,而且也是等比数列 D.既非等比数列又非等差数列
  2.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经过3小时,这种细菌由1个可繁殖成 ( )
  A.511个 B.512个 C.1023个 D.1024个
  3.等差数列{a n}中,已知 ( )
  A.48 B.49 C.50 D.51
  4.已知{an}是等比数列,且an>0,a2a4+2a3a5+a4a6=25,那么a3+a5的值等于 ( )
  A.5 B.10 C.15 D.20
  5.等比数列{an}的首项a1=1,公比q≠1,如果a1,a2,a3依次是某等差数列的第1,2,5项,则q等于 ( )
  A.2 B.3 C.-3 D.3或-3
  6.等比数列{an}的前3项的和等于首项的3倍,则该等比数列的公比为 ( )
  A.-2 B.1 C.-2或1 D.2或-1
  7.已知方程 的四个根组成的一个首项为 的等差数列,则 ( )
  A.1 B. C. D.
  8.数列{an}中,已知S1 =1, S2=2 ,且Sn+1-3Sn +2Sn-1 =0(n∈N*),则此数列为( )
  A.等差数列 B.等比数列
  C.从第二项起为等差数列 D.从第二项起为等比数列
  9.等比数列前 项和为54,前 项和为60,则前 项和为 ( )
  A.66 B.64 C. D.
  10.设等差数列{an}的公差为d,若它的前n项和Sn=-n2,则 ( )
  A.an=2n-1,d=-2 B.an=2n-1,d=2
  C.an=-2n+1,d=-2 D.an=-2n+1,d=2
  11.数列{an}的通项公式是a n = (n∈N*),若前n项的和为10,则项数为( )
  A.11 B.99 C.120 D.121
  12.某人于2000年7月1日去银行存款a元,存的是一年定期储蓄,计划2001年7月1日将到期存款的本息一起取出再加a元之后还存一年定期储蓄,此后每年的7月1日他都按照同样的方法在银行取款和存款.设银行一年定期储蓄的年利率r不变,则到2005年7月1日他将所有的存款和本息全部取出时,取出的钱共为 ( )
  A.a(1+r)4元 B.a(1+r)5元
  C.a(1+r)6元 D. 〔(1+r)6-(1+r)〕元
  二、填空题:
  13.设{an}是公比为q的等比数列,Sn是它的前n项和,若{Sn}是等差数列,
  则q= .
  14.设数列 满足 , 当 时, .
  15.数列 的前n项的和Sn =3n2+ n+1,则此数列的通项公式a n=__ .
  16.在等差数列 中,当 时, 必定是常数数列.然而在等比数列 中,对某些正整数 、 ,当 时,非常数数列 的一个例子是 ___ ___.
  三、解答题:
  17.已知:等差数列{ }中, =14,前10项和 .
  (1)求 ;
  (2)将{ }中的第2项,第4项,…,第 项按原来的顺序排成一个新数列,求此数列的前 项和 .
  18.求下面各数列的和:
  (1) ;
  (2)
  19.数列{an}满足a1=1,an= an-1+1(n≥2)
  (1)若bn=an-2,求证{bn}为等比数列;
  (2)求{an}的通项公式.
  20.某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用12万元,以后每年都增加4万元,每年捕鱼收益50万元,
  (1)问第几年开始获利?
  (2)若干年后,有两种处理方案:
  (3)年平均获利最大时,以26万元出售该渔船;
  (4)总纯收入获利最大时,以8万元出售该渔船.
  问哪种方案合算.
  21.已知数列 是等差数列,且
  (1)求数列 的通项公式;
  (2)令 求数列 前n项和的公式.
  22.某房地产公司推出的售房有两套方案:一种是分期付款的方案,当年要求买房户首付3万元,然后从第二年起连续十年,每年付款8000元;另一种方案是一次性付款,优惠价为9万元,若一买房户有现金9万元可以用于购房,又考虑到另有一项投资年收益率为5%,他该采用哪种方案购房更合算?请说明理由.(参考数据1.059≈1.551,1.0510≈1.628)
  参考答案
  一、选择题:BBCAB CCDDC CD
  二、填空题:13.1.14. .
  15. .16、 , 与 同为奇数或偶数.
  三、解答题:
  17.解析:(1)由 ∴
  由
  (1)设新数列为{ },由已知,
  18.解析:(1)
  (本题用到的方法称为“裂项法”,把通项公式化为an=f(n+1)-f(n)的形式)
  (2)通项 呈“等差×等比”的形式,
  19.解析: (1)由an= an-1+1得an-2= (an-1-2)
  即 ,(n≥2)
  ∴{bn}为以-1为首项,公比为 的等比数列
  (2)bn=(-1)( )n-1,即an-2=-( )n-1
  ∴an=2-( )n-1
  20.解析:(1)由题设知每年费用是以12为首项,4为公差的等差数列,设纯收入与年数的关系为 ,
  ∴ ,
  获利即为 >0, ∴ ,
  解之得: ,
  又n∈N, ∴n=3,4,…,17, ∴当n=3时即第3年开始获利;
  (1)(i)年平均收入=
  ∵ ≥ ,当且仅当n=7时取“=”,
  ∴ ≤40-2×14=12(万元)即年平均收益,总收益为12×7+26=110万元,此时n=7.
  (ii) ,∴当
  总收益为102+8=110万元,此时n=10,比较两种方案,总收益均为110万元,但第一种方案需7年,第二种方案需10年,故选择第一种.
  21.解析:设数列 公差为 ,则 又
  所以 (Ⅱ)令 则由 得
  ① ②
  当 时,①式减去②式,得
  所以
  当 时, ,综上可得当 时,
  当 时,
  22.解析:如果分期付款,到第十一年付清后看其是否有结余,设首次付款后第n年的结余数为an,
  ∵a1=(9-3)×(1+0.5%)-0.8=6×1.05-0.8
  a2=(6×1.05-0.8)×1.05-0.8=6×1.052-0.8×(1+1.05)
  ……
  a10=6×1.0510-0.8(1+1.05+…+1.059)
  =6×1.0510-0.8×
  =6×1.0510-16×(1.0510-1)
  =16-10×1.0510
  ≈16-16.28=-0.28(万元)
  所以一次性付款合算.