如图,C为线段AB上的任意一点,分别以AC、BC为边在AB同侧做等边△ACD和等边△BCE,连接AE、BD,交点为O求证:OC平分角AOB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:19:37
如图,C为线段AB上的任意一点,分别以AC、BC为边在AB同侧做等边△ACD和等边△BCE,连接AE、BD,交点为O求证:OC平分角AOB
如图,C为线段AB上的任意一点,分别以AC、BC为边在AB同侧做等边△ACD和等边△BCE,连接AE、BD,交点为O
求证:OC平分角AOB
如图,C为线段AB上的任意一点,分别以AC、BC为边在AB同侧做等边△ACD和等边△BCE,连接AE、BD,交点为O求证:OC平分角AOB
证明:∵∠ACD=∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB,
又∵CA=CD,CE=CB,
∴△ACE≌△DCB(SAS).
∴∠CAE=∠CDB,
又∵∠AGC=∠DGO,
∴△AGC∽△DGO.
∴GA:GD=GC:GO.
又∵∠DGA=∠OGC,
∴△AGD∽△CGO,
∴∠ADC=∠AOC.
同理∠BEC=∠BOC.
∵CA=CD,CB=CE,
∴∠ADC= 1/2(180°-∠ACD),
∠BEC= 1/2(180°-∠BCE).
∵∠ACD=∠BCE,
∴∠ADC=∠BEC,
∴∠AOC=∠BOC.
方法2: 证明:∵∠ACD=∠BCE=60°,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB,
又∵CA=CD,CE=CB,
∴△ACE≌△DCB(SAS).
∴AC=BD,S⊿ACE=S⊿DCB
∴点C到AC,BD的距离相等(即两个三角形的高相等)
∴点C在∠AOB的平分线上
即:OC平分∠AOB
因为AC=CD CE=CB ∠ACE=∠DCB=120°
所以△ACE全等于△DCB (SAS)
所以∠CDB=∠EAC
过C做CM垂直AE , CN垂直DB 垂足分别为M,N
因为∠CND=∠CMA=90°
所以△CND全等于△CMA (AAS)
所以CM=CN
因为OC=OC
所以△OCM全等于△OCN (H...
全部展开
因为AC=CD CE=CB ∠ACE=∠DCB=120°
所以△ACE全等于△DCB (SAS)
所以∠CDB=∠EAC
过C做CM垂直AE , CN垂直DB 垂足分别为M,N
因为∠CND=∠CMA=90°
所以△CND全等于△CMA (AAS)
所以CM=CN
因为OC=OC
所以△OCM全等于△OCN (HL)
所以∠MOC=∠OOC
所以OC平分角AOB
收起
555