函数,映射,集合三位一体的证明题目设f:X→Y,A包含于X,B包含于X,证明:1.f(A并B)=f(A)并f(B)2.f(A交B)包含于f(A)交f(B) ps:包含于的符号打不出来,各位达人自己翻译下吧,小弟已经让这个证

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:00:34

函数,映射,集合三位一体的证明题目设f:X→Y,A包含于X,B包含于X,证明:1.f(A并B)=f(A)并f(B)2.f(A交B)包含于f(A)交f(B) ps:包含于的符号打不出来,各位达人自己翻译下吧,小弟已经让这个证
函数,映射,集合三位一体的证明题目
设f:X→Y,A包含于X,B包含于X,证明:
1.f(A并B)=f(A)并f(B)
2.f(A交B)包含于f(A)交f(B)
ps:包含于的符号打不出来,各位达人自己翻译下吧,
小弟已经让这个证明题弄得焦头烂额了,望各位精通数学的哥哥姐姐们帮帮忙,

函数,映射,集合三位一体的证明题目设f:X→Y,A包含于X,B包含于X,证明:1.f(A并B)=f(A)并f(B)2.f(A交B)包含于f(A)交f(B) ps:包含于的符号打不出来,各位达人自己翻译下吧,小弟已经让这个证
就是证明集合相等的方法:证明左边的集合包含于右边集合,并且 右边的集合包含于左边集合
1、任取x∈f(A∪B),则存在t∈A∪B,使得x=f(t). t∈A∪B,则t∈A或t∈B,所以,x∈f(A)或x∈f(B). 所以,x∈f(A)∪f(B). 所以 f(A∪B) 包含于 f(A)∪f(B)
类似的,可证明 f(A)∪f(B) 包含于 f(A∪B)
所以,f(A∪B) = f(A)∪f(B)
2、与1证法一样

1、讨论,若A包含于B,则A并B等于B,f(A)并f(B)=f(B),所以f(A并B)=f(A)并f(B),若B包含于A,同理可得
2、一样的道理,讨论,就不用我打了吧,这样打符号真辛苦^_^

函数,映射,集合三位一体的证明题目设f:X→Y,A包含于X,B包含于X,证明:1.f(A并B)=f(A)并f(B)2.f(A交B)包含于f(A)交f(B) ps:包含于的符号打不出来,各位达人自己翻译下吧,小弟已经让这个证 设A,B是有限集合,且|A|=|B|,又f:A->B是一个映射,证明:f是单射f是满射.>>求详细的证明嗯嗯 集合映射题目集合M={a,b,c},集合N={-1,0,1},由M到N的映射f满足条件f(a)+f(b)=f(c),这样的映射共有几个?恳请写出! 高一数学函数题~要详细~50分练习1:已知集合M={a,b,c},N={-3,0,3},f是集合M到集合N的映射,则满足f(a)+f(b)+f(c)=0的映射个数是____个?(详细过程)练习2:设集合A={a,b,c},B={1,2},写出从集合A到集合B的所有映射 设集合A和B都是自然数集合N.映射f:A到B把集合A中的元素n映射到集合B中的元素2^n+n,则在映射f下,象20的原象是? 设集合A和B都是自然数集合N,映射f:A到B把集合A中的元素n映射到集合B中的元素2^n+n,则在映射f下,象11的原象是 函数映射的概念设A、B是两个非空的集合,如果按照一个确定的对应关系f,使对于集合A中的任意一个元素X,在集合B中都有( )与之对应.那么就称对应f:A-B为集合A到集合B的一个映射.这时,称 集合、映射,证明题.设映射f:A—>B是可逆的,证明它的逆映射是唯一的.(帮忙请写规范严格的证明过程,否则没什么帮助的)答得不错,但我希望用更数学一点的语言,再严格一点。我自己看 设集合A={1,2},则从A到A的映射f满足f(f(x))=f(x)的映射个数是 数学集合问题,求解释题目中附有答案,但本人看不明白,就只好求助于各位兄弟姐妹了!1、设集合A=[-3/4∏,∏],B=[-1,1],f:x→x表示把集合A到集合B的映射,则在映射f下,象1/2的原象有( )个答案:32 设映射f:X→Y,若存在一个映射g:Y→X,使g°f=Ix,f°g=Iy,其中Ix、Iy分别是X、Y上的恒等映射,即对于每一个x∈X,有Ixx=x;对于每一个y∈Y,有Iyy=y.证明:f是双映射,且g是f的逆映射:g=f-1;(注此题目 设f:A→B是集合A到集合B的映射,以下这句话为什么不对?设f:A→B是集合A到集合B的映射,“B必是A中元素的象集” 关于映射和多值函数的迷惑1.映射定义:设X、Y是两个非空集合,如果存在一个法则f,使得对X中每个元素x,按法则f,在Y中有唯一确定的元素y与之对应,则称f为从X到Y的映射.2.函数定义 设数集D是 设f:x--|x|是集合A到集合B的映射,若A=(-2,0,2), 设f:x_x2是集合A集合B的映射,如果B={1,2}.则AnB=? 请帮助证明集合的对偶律,A.B.C为任意三个集合,请帮助证明对偶律:(A∩B)^c = A^c∪B^c第二个我明白您说的理论了,那么请问下面这个证明题应该怎样来证明呢?设映射f:X→Y,集合A属于集合X, 中学数学题——关于集合与映射的.(8.25)设集合M={ -1,0,1},集合N={5,6,7,8,9},映射f:M→N满足:对任意x属于M都有x+f(x)+x·f(x)为奇数,求这样的映射f有多少个?问:·1、题目意思是不是:x是M中的元 集合A到集合B的映射与 函数的区别?函数:设A,B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A