高中立体几何题 已知四棱锥P-ABCD中,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:43:35
高中立体几何题 已知四棱锥P-ABCD中,
高中立体几何题 已知四棱锥P-ABCD中,
高中立体几何题 已知四棱锥P-ABCD中,
空间向量
高中立体几何题 已知四棱锥P-ABCD中,
高中立体几何证明题:如图:在四棱锥P-ABCD中,底面ABCD是平行四边形,E是PC的中点,求证 :PA 平行 平面EDB
高中立体几何题,如图,已知四棱锥P-ABCD的底面为等腰梯形 AB∥CD,AC⊥BD,PH是四棱锥的高,垂足为H如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,PH是四棱锥的高,垂足为H,E为AD的中点.(1)证明PE
高中立体几何,请问我这样做对不对呢?原题:在四棱锥O-ABCD中,底面ABCD为平行四边形,M为高中立体几何,请问我这样做对不对呢?原题:在四棱锥O-ABCD中,底面ABCD为平行四边形,M为OA的中点,N为BC的
高中立体几何 不难的,在底面是平行四边形的四棱锥P--ABCD中,AB垂直于AC,PA垂直于ABCD且PA=AB,点E是PD的中点.求证:PB//平面AEC
高中立体几何 急在四棱锥P-ABCD中,底面ABCD是菱形,PA⊥ABCD,AB=1,PA×AC=1 角ABC=⊙若⊙=90 求二面角A-PC-B的大小 试求四棱锥P-ABCD的体积V的取值范围
高中立体几何题已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.若H为PD上的动点,EH与平面PAD所成最大角的正切值为(√6)/2,求二面角E-AF-C的余弦值.
高中立体几何二面角一道题目!四棱锥P-ABCD.PA垂直矩形ABCD所在平面,M、N分别是AB、PC的中点,且MN垂直于平面PC,求二面角P-CD-B的大小
一道高中立体几何,已知四棱锥四个侧面都是腰长为√7,底边长为2的等腰三角形,求棱锥的体积
一道高中立体几何的题目.已知长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=4,O1是底面A1B1C1D1的中心.E是CO1上的点,设CE等于X,四棱锥E-ABCD的体积为y,求y关于X的函数关系式..图只有自己画一下了,
高中立体几何 急,会的网友速度如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥地面ABCD,PA=AD=1,AB=2,F是PD的中点,E是线段AB上的点.(1)当E是AB的中点时,求证:AF平行与平面ABCD(2)要使二面角P-EC-D的大小为4
高中立体几何中直棱锥,正棱锥有什么特点
高中立体几何题.
关于高中立体几何作平行截面的问题已知:正四棱锥V-ABCD中,所有棱长为3,E、F分别为线段VB、VD上中点,作出过直线BD的截面,使得截面平行于面AEF要写出具体做法,最好有示意图
高中立体几何 二面角已知四棱锥P-ABCD是底面ABCD是平行四边形,面PAB垂直面ABCD,且PA=BC=a,PB=AC=2a,角APB=60度,1,求二面角B-PC-A的正弦值 2,若点M在CD上,且DM=1/3DC,求点A到平面PMB的距离如图
高中立体几何:四棱锥P-ABCD的底面是矩形,PA垂直平面ABCD,PA=AB=1,BC=根号2四棱锥P-ABCD的底面是矩形,PA垂直平面ABCD,PA=AB=1,BC=根号21,如果在BC上存在E点,使得平面PED垂直PAC,证明E为BC的中点2,在1的条
一道高中几何证明题,在正四棱锥V-ABCD中,E为VC中点,正四棱锥底面边长为2,高为1.求异面直线BE与VA所成角的余弦.
已知四棱锥p-abcd的三视图如图所示,求此四棱锥的四个侧面的面积中最大值