第十六届“希望杯”全国数学邀请赛初一 第2试

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 23:29:25

第十六届“希望杯”全国数学邀请赛初一 第2试
第十六届“希望杯”全国数学邀请赛初一 第2试

第十六届“希望杯”全国数学邀请赛初一 第2试
第十六届“希望杯”全国数学邀请赛
初一 第2试
2005年4月17日 上午8∶30至10∶30
选择题:(以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母填在每题后面的圆括号内.)
1.如果,则一定成立的是( )
(A)是的相反数 (B)是的相反数 (C)是的倒数 (D)是的倒数
2.当时,式子的值等于( )
(A) (B) (C)1 (D)
3.从不同的方向看同一物体时,可能看到不同的图形,其中,从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫俯视图.由若干个(大于8个)大小相同的正方体组成一个几何体的主视图和俯视图如图1所示,则这个几何体的左视图不可能是( )


4.如图2所示,在矩形ABCD中,E、H、G在同一条直线上,则阴影部分的面积等于( )
(A)8 (B)12 (C)16 (D)20

5.In a triangle,if measures of three angles are x,2x and 3x respectively,then the measure of the largest angle is ( )
(A)150° (B)120° (C)90° (D)60°
(英汉词典 triangle:三角形.measure:量度.the largest angle:最大角)
6.If we have <0,<0 and <0,then the points in real number axis, given by a and b, can be represented as ( )
(A) (B)
(C) (D)
7.方程的解的个数是( )
(A)1 (B)2 (C)3 (D)4
8.如果,那么下列不等式中成立的是( )
(A)>b (B)<b (C)≥b (D)≤b
9.如图3,两直线AB、CD平行,则∠1+∠2+∠3+∠4+∠5+∠6=( )
(A)630° (B)720° (C)800° (D)900°

10.若大于1的整数n可以表示成若干个质数的乘积,则这些质数称为n的质因数,则下面四个命题中正确的是( )
(A)n的相反数等于n的所有质因数的相反数之积
(B)n的倒数等于n的所有质因数的倒数之积
(C)n的倒数的相反数等于n的所有质因数的倒数的相反数之积
(D)n的相反数的倒数等于n的所有质因数的相反数的倒数之积
二、填空题
11.若是方程的解,则=_________.
12.张师傅加工一批同样类型的零件,他用A车床加工了这批零件的二分之一后,再用B车床加工余下的零件,共用了4小时.已知用B车床比用A车床每小时可以多加工8个零件,后两个小时比前两个小时多加工了12个零件.张师傅加工零件的总数是________个.
13.如果,那么__________.
14.两个正整数x和y的最大公约数是4,最小公倍数是20,则_______.
15.If two rational numbers x,y satisfy and then x =_________.
(英汉词典 rational number:有理数)
16.小明的妈妈买了葡萄、苹果、雪梨和芒果果脯各若干袋,用了340元.葡萄、苹果、雪梨和芒果果脯每袋售价分别为14元、22元、28元和42元.小明的妈妈至少买了_____袋果脯,其中苹果果脯是________袋.
17.地球陆地总面积相当于海洋总面积的41%,北半球的陆地面积相当于其海洋面积的65%,那么,南半球的陆地面积相当于其海洋面积的_________%(精确到个位数).
18.在公路上汽车A、B、C分别以每小时80、70、50公里的速度匀速行驶,A从甲站开往乙站,同时,B、C从乙站开往甲站.A在与B相遇后两小时又与C相遇,则甲、乙两站相距__________公里.
19.我们用记号“|”表示两个正整数间的整除关系,如3|12表示3整除12,那么满足与的正整数组共有________组.
20.用大小相同的正六边形瓷砖按如图4所示的方式来铺设广场,中间的正六边形瓷砖记为A,定义为第一组,在它的周围铺上六块同样大小的正六边形瓷砖,定义为第二组,在第二组的外围用同样大小的正六边形瓷砖来铺满,定义为第三组,…,按这种方式铺下去,用现有的2005块瓷砖最多能完整地铺满_______组,此时还剩余__________块瓷砖.

三、解答题:(要求:写出推算过程)
21.请在下面的五个方框中画出5种不同的正方体的展开图(经过平移或旋转后能够重合的,算作一种).
22.已知非负实数满足,记,求W的最大值与最小值.
23.如图6(a)是一个的网格,其中放了“希、望、杯、数、学、竞、赛、题”八个字块,但是放错了顺序.问:
是否可以移动网格中的字块,将图6(a)中所示的八个字块校正成图6(b)中所示的八个字块.如果能,请写出操作过程;如果不能,请说明理由.
要求:在每次移动网格中的字块时,只能将字块滑动到相邻的空的网格中.

第十六届“希望杯”全国数学邀请赛
参考答案及评分标准
初中一年级 第2试
一、选择题(每小题5分)
题 号 1 2 3 4 5 6 7 8 9 10
答 案 C A B B C B B D D B
二、填空题(每小题5分,含两个空的,前空3分,后空2分)
题 号 11 12 13 14 15 16 17 18 19 20
答 案
60
18
6641
O
11; 4
23
1950
5
26;54

三、解答题
21.答案不惟一.
(每做对一图得2分)
22、
因为 x,y,z均为非负实数.

所以W的最小值是19,最大值是35 (10分)
23.不能.
理由如下:
(1)将“希、望、杯、数、学、竟、赛、题”八个字编号,分另q是1.2、3、4、5、6、7、8,则图6(8)变为图(c),调整汉字就是调整这些数字. (1分)
(2)将3×3网格中的数字从左至右、从上往下排成一个八位数,则图(c)对应的八位数是
12354678,其中,数字5排在了4的左端,则称这
个八位数有一个逆序.一个网格所对应的八位
数的逆序的总数称为这个网格的“逆序量”.例
如:图(c)的“逆序量”是1;图(d)对应的八位数
是12357468,其中,5的右端有1个数字4比5
小,7的右端有2个比7小的数字4和6,所以图
(d)的“逆序量”是3. (3分)
(3)两个相邻数字交换位置,逆序的改变量只能是1或一1. (5分)
(4)在同一行中,按照要求调整数字时,数字只能左右移动,移动前后的网格所对应的八位数完全相同,“逆序量”不发生变化,或称“逆序量”的改变是0. (6分)
如果按照要求,将数字移动到相邻的行中,相当于在网格所对应的八位数中,将某个数字向左(或向右)跳过了两个数字,既然两个相邻数字交换位置,逆序的改变量只能是l或一1,那么,交换两个数字逆序的改变量只能是2或者是0或者是一2. (8分)
如由图(c)到图(d).相应的八位数由12354678调整为12357468,相应的“逆序量”由1改变为3.改变量是2.
(5)按照要求移动汉字时,逆序的改变量是偶数,不会改变网格的“逆序量”的奇偶性·
(9分)
但是,图6(a)的“逆序量”是奇数,图6(b)的“逆序量”是偶数,所以 不能按要求将图6(a)调整为图6(b).
(10分)

www.yoyor.com.cn