求抛物线与椭圆方程抛物线M的顶点在坐标原点,对称轴为坐标轴,它的准线经过椭圆N:x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点,且与椭圆N相交,其中一个交点为P(2,根号2)求抛物线M与椭圆N的方程
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 03:39:15
求抛物线与椭圆方程抛物线M的顶点在坐标原点,对称轴为坐标轴,它的准线经过椭圆N:x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点,且与椭圆N相交,其中一个交点为P(2,根号2)求抛物线M与椭圆N的方程
求抛物线与椭圆方程
抛物线M的顶点在坐标原点,对称轴为坐标轴,它的准线经过椭圆N:x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点,且与椭圆N相交,其中一个交点为P(2,根号2)
求抛物线M
与椭圆N的方程
求抛物线与椭圆方程抛物线M的顶点在坐标原点,对称轴为坐标轴,它的准线经过椭圆N:x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点,且与椭圆N相交,其中一个交点为P(2,根号2)求抛物线M与椭圆N的方程
设y²=2px,代入P(2,√2)得p=1/2
抛物线M:y²=x
准线方程 x=-p/2=-1/4 即椭圆焦点为(±1/4,0)
a^2+b^2=c^2=1/16 ①
和将P(2,√2)代入x^2/a^2+y^2/b^2=1得 4/a^2+2/b^2=1 ②
联立解出a、b可得椭圆N的方程
求抛物线与椭圆方程抛物线M的顶点在坐标原点,对称轴为坐标轴,它的准线经过椭圆N:x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点,且与椭圆N相交,其中一个交点为P(2,根号2)求抛物线M与椭圆N的方程
已知抛物线顶点抛物线顶点在坐标原点抛物线焦点与椭圆x²/16+y²/15=1的左焦点相同抛物线上求一点P到椭圆左顶点距离最小
已知直线l的方程y=mx+m^2,抛物线C1的顶点和椭圆C2的中心都在坐标原点,且它们的焦点均在y轴上,当m=1时,直线l与抛物线C1有且只有一个公共点,求抛物线C1的方程
已知椭圆C1与抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都在坐标原点,过点M(4,0)的直线l与抛物线C2分别交与A,B两点1.写出抛物线C2的标准方程.2若向量AM等于二分之一向量BM,求直线l的方程
已知抛物线C₁的焦点与椭圆C2:x²/6+y²/5=1的右焦点重合,抛物线C₁的顶点在坐标原点,过点M(4,0)的直线l与抛物线C₁分别交与A,B两点,若|AB|=4倍根号下10,求直线l的方程
抛物线顶点在原点,焦点坐标为(2.0)①求抛物线的标准方程
已知抛物线定点在坐标原点,抛物线焦点与椭圆x²/16+y²/15=1的左焦点相同,在抛物线上求一点P,使它到椭圆左顶点的距离最小.
椭圆中心在坐标原点,焦点在x轴上,离心率为根号2/2,顶点为抛物线x^2=4y的焦点,求椭圆方程直线y=x-1与抛物线相切于点A,求以A为圆心且与抛物线的准线相切的圆的方程
抛物线的顶点在坐标原点,且开口向右,点ABCD在抛物线上,△ABC的重心F为抛物线的焦点直线AB的方程为:4x+y-20=0⑴求抛物线的方程⑵设点M为一定点,过点M的动直线L与抛物线交于点P,Q两点,试推是
求解抛物线的题已知椭圆C1和抛物线C2有公共焦点F(1,0),C1的中心和C2的顶点都有坐标原点,过点M(4,0)的直线l与抛物线C2分别相交于A,B两点.1.写出抛物线C2的标准方程、2.若向量AM=1/2MB向量,求直线
已知椭圆,双曲线和抛物线都经过M(2 ,4) ,且它们在X轴上有个公共焦点.1,求这三曲线方程2,在抛物线上求一点P,使P与椭圆,双曲线的右顶点连成的三角形的面积为620.已知抛物线M的顶点在原点,焦
一道关于椭圆的题.已知椭圆的中心在坐标原点,椭圆的右焦点F2与抛物线与Y平方=4X的焦点重合.且椭圆经过点P(1,3/2),①,求椭圆的方程.②,求以这个椭圆的焦点为顶点,顶点为焦点的双曲线的
已知抛物线、椭圆和双曲线都经过点M(1,2),它们在X轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标此原点.求:(1)求这三条曲线的方程(2)已知动直线L过点P(3,0),交抛物线于
已知椭圆的中心在坐标原点,椭圆的右焦点F2与抛物线y方=4x的焦点重合,且椭圆经过点P(1,2/3)(1)求这个椭圆的方程(2)求以这个椭圆的焦点为顶点,顶点为焦点的双曲线方程
抛物线的顶点是坐标原点,对称轴是坐标轴,并且过点M(3,-4),求抛物线方程.
已知抛物线y=ax的平方-4x+c经过点a(0.-6)b(3.-9)1.求抛物线解析式2.写出抛物线的对称轴方程和顶点坐标3.点p(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及
顶点在坐标原点,求准线方程为y=4的抛物线方程
已知抛物线的顶点为椭圆x^2/a^2 +y^2/b^2=1(a>b>0)的中心.椭圆的离心率是抛物线的离心率的一半,又抛物线与椭圆的一交点为M(2/3,-2√6/3),求抛物线与椭圆的方程.