F=R—R对每个x属于实数y=x2为什么这个映射为非满射
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 11:20:39
F=R—R对每个x属于实数y=x2为什么这个映射为非满射
F=R—R对每个x属于实数y=x2为什么这个映射为非满射
F=R—R对每个x属于实数y=x2为什么这个映射为非满射
f 是满射的条件正如楼主所说,是 Y 的每个元素 y 都在 X 中至少有一个原像.
y=-1没有原像
F=R—R对每个x属于实数y=x2为什么这个映射为非满射
设y=f(x) (x属于R)对任意实数x1,x2,满足f(x1)+f(x2)=f(x1*x2),求证f(x)是偶函数
高数映射(单射&满射)设f:R(右箭头)R,对每个x(属于)R,f(x)=x2(上标),值域为 y大于等于0这个映射为什么不是满射?
已知函数y=f(x)(x属于R,且x不等于零) 对任意非零实数x1,x2,恒有f(x1乘以x2) =f(x1)+f(x2).求证:f(1/X)=-F(X)
设y=f(x)(x属于R)对任意实数x1,x2,满足f(x1)+f(x2)=f(x1*x2)求证 (1)f(1)=f(-1)=0 (2)f(x)是偶函数
设函数y=f(x)(x属于R,且x≠0)对任意非零实数x1,x2恒有f(x1x2)=f(x1)+f(x2),问f(x)的表达式可以是?
设 f:R→R,对每个x属于R,f(x)=x².为什么这个函数不是满射?
已知函数满足对任意xy属于R都有f(x+y)=f(x)*f(y)-f(x)-f(y)+2成立,且x2,证明x
急 y=f(x),对x属于R,满足f(x1)+f(x2)=f(x1*x2) 求证:f(x)为偶函数
定义在R上的函数y=f(x)具有以下性质①对任意x属于R都有f(x^3)=f^3(x)②对于任意实数x1.x2.x1不等于x2都有f(x1)≠f(x2).则f(0)+f(1)+f(-1)的值是?
高中数学题:设函数f(x)对任意x、y属于实数R都有f(x+y)=f(x)+f(y),且x
Y=f(x) 定义域R f(x1x2)=f(x1)+f(x2) 求f(x)奇偶性不好意思,补充下.x属于R 且x不等于0 函数对任意的非零实数x1x2恒有f(x1x2)=f(x1)+f(x2) 判断f(x)奇偶性
对一切实数x、y属于R函数f(x)满足f(xy)=f(x)f(y)且f(o)不等于0,则f(2010)=
找出所有实数集R到R的函数f:使得对所有x,y,z,t属于R,有[f(x)+f(z)]乘[f(y)+f(t)]=f(xy-zt)+f(xt+yz).
找出所有实数集R到R的函数f:使得对所有x,y,z,t属于R,有[f(x)+f(z)]乘[f(y)+f(t)]=f(xy-zt)+f(xt+yz).
已知函数f(x)对一切实数x,y属于R都有f(x+y)=f(x)+f(y),且当x大于0时已知函数f(x)对一切实数x,y属于R都有f(x+y)=f(x)+f(y)求证:(1)f(x)是奇函数;(2)若x>0,f(x)
函数f(x)的定义域为R,且满足下面两个条件:①存在x1不等于x2,使f(x1)不等于f(x2)②对任意x、y属于R,有f(x+y)=f(x)·f(y)证明:对任意x、y属于R,f(x)>0恒成立
要详解设函数f(x)的定义域为R,且满足下列两个条件:(1).存在x1不等于x2,使f(x1)不等于f(x2)(2).对任意x,y属于R,有f(x+y)=f(x)*f(y) 求:(1)f(0)的值 (2)求证:对任意x属于R,f(x)>0恒成立