设向量组α1,α2,……αs能由向量组β1,β2,……βt线性表示为(α1,α2,……αs)=(β1,β2,……βt)A,其中A为t×s矩阵,且β1,β2,……βt线性无关,证明:α1,α2,……αs线性无关的充分必要条件是R(A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:51:04
设向量组α1,α2,……αs能由向量组β1,β2,……βt线性表示为(α1,α2,……αs)=(β1,β2,……βt)A,其中A为t×s矩阵,且β1,β2,……βt线性无关,证明:α1,α2,……αs线性无关的充分必要条件是R(A
设向量组α1,α2,……αs能由向量组β1,β2,……βt线性表示为(α1,α2,……αs)=(β1,β2,……βt)A,其中A为t×s矩阵,且β1,β2,……βt线性无关,证明:α1,α2,……αs线性无关的充分必要条件是R(A)=s
设向量组α1,α2,……αs能由向量组β1,β2,……βt线性表示为(α1,α2,……αs)=(β1,β2,……βt)A,其中A为t×s矩阵,且β1,β2,……βt线性无关,证明:α1,α2,……αs线性无关的充分必要条件是R(A
记B=(β1,β2,……βt),C=(α1,α2,……αs),则原等式方程可以表示为BA=C.取一s维纵向量x,有BAx=Cx,记Cx=y,亦是一个s维纵向量.另记s维纵向量z=Ax,那么有Bz=y.
·充分性:当r(C)=r(B)=s,那么方程Cx=y、Bz=y均有唯一解,即对于确定的z,方程Ax=z亦有唯一解,此时必有r(A)=s
·必要性:把充分性的证明翻回去即可,当r(A)=s,方程Ax=z有唯一解,即y=Bz唯一,即对于确定的y,方程Cx=y有唯一解,此时必有r(C)=s
放弃吧!这不是正常地球人会做的
设向量组1:α1,α2,…αs 可由 向量组2β1,β2,β3,.βs线性表出问一下向量组1 线性无关,向量组1 线性相关时r和s的关系 以及向量组2线性无关,向量组2 线性相关时r和s的关系
线性代数的证明题,设向量β可由向量组α1,α2,…αS,线性表示,但不能由向量组(Ⅰ)α1,α2,…αS-1线性表示.记向量组(Ⅱ)α1,α2,…αS-1,β,试证向量αS不能由(Ⅰ)线性表示,但可以由(Ⅱ)线
向量b能由向量组A线性表示,可否说向量组是线性相关的?设向量β可由向量组α1,α2,...,αr线性表示,但不能由向量组α1,α2,...,αr-1线性表
线性代数中的r和s代表什么意思下面这句话中的r和s表示什么意思?设向量组(Ⅰ):α1,α2,…,αr可由(Ⅱ):β1,β2,…,βs线性表示.若r>s,则向量组(Ⅰ)线性相关.这个是向量组的秩里面的一
设向量组1:α1,α2,α3能由向量组2:β1,β2线性表出,则向量组1线性相关,为什么?
怎么证明“如果多数向量能用少数向量线性表出,那么多数向量一定线性相关”若向量组α1,α2,…αs可由向量组β1,β2,…βt线性表出,且s>t,则α1,α2,…αs线性相关.这句话怎么理解啊?怎样证明?
一道线性代数题的理解设向量组I:α1,α2 ,...,αr可由向量组II:β1,β2 ,...βs线性表示若向量组I线性无关,则r≤s有个选项有疑问:若向量组II线性相关,则r>s为什么不对呢?能举个反例吗?另外,老师
设向量组α1,α2,……αs能由向量组β1,β2,……βt线性表示为(α1,α2,……αs)=(β1,β2,……βt)A,其中A为t×s矩阵,且β1,β2,……βt线性无关,证明:α1,α2,……αs线性无关的充分必要条件是R(A
设n维列向量组α1,α2,…,αm(m<n)线性无关,则n维列向量组β1,β2,…,βm线性无关的充分必要条件为 ( )A.向量组α1,α2,…,αm可由向量组β1,β2,…,βm线性表示B.向量组β1,β2,…,βm可由向量组α1,α2,
向量组与秩设向量组(Ⅰ)α1,α2,……αs; (Ⅱ)β1,β2,……βt的秩分别为r1和r2, 若(Ⅰ)中每一个向量均可由 (Ⅱ)线性表示,则r1和r2的关系是,求详细解释,谢谢
设向量b能由向量组a1,…am线性表示,但不能由Ⅰ:a1,…am-1向量组线性表示,记向量组Ⅱ:a1,…,am-1,b.证明向量am不能由向量组Ⅰ线性表示但能由向量组Ⅱ线性表示
高等代数证明问题设向量β可以由α1α2…αn线性表示,但不能由α1α2…αn-1线性表示.证明,向量组{α1α2…αn}与向量组{α1α2…αn-1,β}等价.
若向量组A:α1,α2,α3线性无关,向量β1能由A线性表示,向量β2不能由A线性表示,则必有为什么是α1,α2,β2线性无关
向量组1:α1,α2,…αr 可由 向量组2β1,β2,β3,..βs线性表出求证:r(α1,α2,…αr)
α1,α2…αr与向量组β1,β2…βs的秩相等,α1,α2…可由β1β2…线性表示,证明两向量等价
线性代数有关相关性的证明!求证.设向量β可由向量组α1,α2,...,αr线性表示,但不能由向量组α1,α2,...,αr-1线性表示,证明αr不能由向量组α1,α2,...,αr-1线性表示
线性代数 向量设向量组(1)α1,α2,...,αr是向量组(2)α1,α2,...,αs的部分线性无关组则()当(2)中得向量均可由(1)线性表示时,r(1)=r(2)我的问题是:∵(1)是(2)的部分无关组
有关向量组线性相关性的一道证明题,设向量组(1)α1,α2,α3.αr线性无关,且可由(2)β1,β2,β3.βs线性表示,证明:在(2)中至少存在一个向量βj,使βj,α2,α3.αr线性无关.