1x2+2x3+3x4+.+2011x2012
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 11:43:36
1x2+2x3+3x4+.+2011x2012
1x2+2x3+3x4+.+2011x2012
1x2+2x3+3x4+.+2011x2012
整数裂项
1/(2011×2012)×(1×2+2×3+...+2011×2012)
=1/(2011×2012)×(2011×2012×2013)/3
=2013/3
=671
1x2+2x3+3x4+。。。+2011x2012
= 2011x2012x2013 / 3
所以 最后算式 = 2013/3 = 671
2011*2012*2013/3
由题意
1x2+2x3+3x4+。。。+2011x2012
=2010x(2011x2012) / 3+3x(2011x2012)/3
=2011x2012x2013/3
所以上面结果就是
(1/2011x2012) x 2011x2012x2013/3
=2013/3
=671
671
=1/(2011*2012)*2011*2012*2013/3
=2013/3=671
因为1x2+2x3+3x4+。。。+2011x2012 共有2011项,
所以
1x2+2x3+3x4+。。。+2011x2012=2011X2012X2013/3
[1/(2011X2012)]X1x2+2x3+3x4+。。。+2011x2012
=[1/(2011X2012)]X2011X2012X2013/3
=2013/3=671
根据上面列出的规律,可以得出: (1x2+2x3+3x4+…+2011x2012)=(2011x2012x2013)/3 所以: 1/(2011x2012)x(1x2+2x3+3x4+…+2011x2012)=2013/3
(1*2+2*3+3*4.....+2011*2012)/(2011*2012)
=2011*2012*2013/3/(2011*2012)=2013/3=671