基本不等式:怎样求证(a+b)/2小于等于 根号下((a2+b2)/2)注:a2为a的平方
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/03 05:38:06
基本不等式:怎样求证(a+b)/2小于等于 根号下((a2+b2)/2)注:a2为a的平方
基本不等式:怎样求证(a+b)/2小于等于 根号下((a2+b2)/2)注:a2为a的平方
基本不等式:怎样求证(a+b)/2小于等于 根号下((a2+b2)/2)注:a2为a的平方
我经常看到类似的提问,能提出这种问题的人,恕我直言,既然都是“基本不等式”,先把它死记下来,硬背下来,随时活用---------记住我说的,这才是学习之道:
证明无非就是利用:
(a - b)² ≥0 ===> (a² + b²) ≥ 2ab ①
常见几种变形:
② 两边同时加 (a² + b²) ===> (a² + b²) ≥ (a + b)²/2
--------- 引申 √[(a² + b²)/2] ≥ (a + b)/2 ----------就是你要的
③ 用a、b替换a² 、b² ===> (a + b)/2 ≥√(ab) ------- 注意条件a、 b非负
④ 两边同时除b ===> a²/b ≥ 2a - b
⑤ ===> - (a² + b²)/2 ≤ ab ≤ (a² + b²)/2
还有很多
0 ≤ (a-b)^2
0 ≤ a^2+b^2-2ab
a^2+b^2+2ab ≤ 2a^2+2b^2 (两边同时加上a^2+b^2+2ab)
(a^2+b^2+2ab)/4 ≤ (a^2+b^2)/2 (两边同时除以4)
再两边开方,就是要证明的式子了
(a+b)/2≦根号下(a^2+b^2)/2,用反证法,从这个式子出发,两边同时平方,(a+b)^2/4≦(a^2+b^2)/2,打开括号两边整理得a^2+2ab+b^2≦2a^2+2b^2,再将左边式子移项到右边整理得0≦a^2-2ab+b^2,右边即为一个完全平方式,0≦(a-b)^2,这个式子恒成立,所以原式即成立。...
全部展开
(a+b)/2≦根号下(a^2+b^2)/2,用反证法,从这个式子出发,两边同时平方,(a+b)^2/4≦(a^2+b^2)/2,打开括号两边整理得a^2+2ab+b^2≦2a^2+2b^2,再将左边式子移项到右边整理得0≦a^2-2ab+b^2,右边即为一个完全平方式,0≦(a-b)^2,这个式子恒成立,所以原式即成立。
收起
左右平方,整理,最后化简成均值定理