试比较(x^2+y^2)(x-y)与(x^2-y^2)(x+y)的大小

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:21:05

试比较(x^2+y^2)(x-y)与(x^2-y^2)(x+y)的大小
试比较(x^2+y^2)(x-y)与(x^2-y^2)(x+y)的大小

试比较(x^2+y^2)(x-y)与(x^2-y^2)(x+y)的大小
(x^2+y^2)(x-y) = x^3 -x^2 *y + x * y^2 - y^3
(x^2-y^2)(x+y) = x^3 +x^2 *y - x * y^2 - y^3
故:(x^2+y^2)(x-y)-(x^2-y^2)(x+y)
=(x^3 -x^2 *y + x * y^2 - y^3) - (x^3 +x^2 *y - x * y^2 - y^3)
= -2x^2 *y + 2x * y^2
= 2xy(y -x)
又 x0
因此2xy(y -x) >0
即:(x^2+y^2)(x-y)-(x^2-y^2)(x+y) >0
故:(x^2+y^2)(x-y) >(x^2-y^2)(x+y)

xxy>0,x-y<0
(x^2+y^2)(x-y)-(x^2-y^2)(x+y)
=(x^2+y^2)(x-y)-(x-y)(x+y)^2
=-2xy(x-y)
>0
(x^2+y^2)(x-y)>(x^2-y^2)(x+y)

(x^2+y^2)(x-y)/(x^2-y^2)(x+y)
=(x^2+y^2)(x-y)/(x-y)(x+y)^2
=(x^2+y^2)/(x^2+2xy+y^2)
2xy>0
所以
(x^2+y^2)(x-y)<(x^2-y^2)(x+y)